Travelled to:
1 × Australia
1 × Ireland
2 × Germany
2 × United Kingdom
3 × Italy
3 × USA
Collaborated with:
∅ J.Meng R.Piskac Y.Kazakov I.Pratt-Hartmann H.Ganzinger M.Bezem D.Hendriks C.Areces M.d.Rijke
Talks about:
resolut (10) procedur (5) proof (5) fragment (4) guard (4) decis (4) geometr (2) order (2) logic (2) equal (2)
Person: Hans de Nivelle
DBLP: Nivelle:Hans_de
Contributed to:
Wrote 13 papers:
- IJCAR-2010-Nivelle #logic
- Classical Logic with Partial Functions (HdN), pp. 203–217.
- IJCAR-2006-NivelleM #finite #geometry #proving
- Geometric Resolution: A Proof Procedure Based on Finite Model Search (HdN, JM), pp. 303–317.
- SEFM-2005-NivelleP #verification
- Verification of an Off-Line Checker for Priority Queues (HdN, RP), pp. 210–219.
- IJCAR-2004-KazakovN #transitive
- A Resolution Decision Procedure for the Guarded Fragment with Transitive Guards (YK, HdN), pp. 122–136.
- CADE-2003-Nivelle #axiom #first-order #proving
- Translation of Resolution Proofs into Short First-Order Proofs without Choice Axioms (HdN), pp. 365–379.
- CSL-2002-Nivelle #normalisation #proving
- Extraction of Proofs from the Clausal Normal Form Transformation (HdN), pp. 584–598.
- IJCAR-2001-NivelleP #similarity
- A Resolution-Based Decision Procedure for the Two-Variable Fragment with Equality (HdN, IPH), pp. 211–225.
- CADE-2000-BezemHN #automation #proving #type system #using
- Automated Proof Construction in Type Theory Using Resolution (MB, DH, HdN), pp. 148–163.
- CADE-1999-ArecesNR #logic
- Prefixed Resolution: A Resolution Method for Modal and Description Logics (CA, HdN, MdR), pp. 187–201.
- LICS-1999-GanzingerN #similarity
- A Superposition Decision Procedure for the Guarded Fragment with Equality (HG, HdN), pp. 295–303.
- CADE-1998-Nivelle
- A Resolution Decision Procedure for the Guarded Fragment (HdN), pp. 191–204.
- CADE-1997-Nivelle #classification #order
- A Classification of Non-liftable Orders for Resolution (HdN), pp. 336–350.
- IJCAR-2016-Nivelle #algorithm #geometry
- Subsumption Algorithms for Three-Valued Geometric Resolution (HdN), pp. 257–272.