Travelled to:
1 × Australia
1 × Brazil
1 × Canada
1 × Korea
2 × China
2 × United Kingdom
3 × Spain
3 × USA
Collaborated with:
H.Aso M.Iwamura S.Uchida K.Kise F.Sun N.Kato S.Taguchi H.Ujiie T.Kato M.Inoue K.Negishi Y.Katsuyama A.Minagawa Y.Hotta R.Hattori M.Sakai T.Kimura R.Huang M.Liwicki A.Yoshida R.Niwa A.Horimatsu K.Iwata T.Nakai S.Kono T.Takagi
Talks about:
charact (8) recognit (6) base (4) distribut (3) search (3) embed (3) imag (3) use (3) algorithm (2) document (2)
Person: Shinichiro Omachi
DBLP: Omachi:Shinichiro
Contributed to:
Wrote 18 papers:
- ICDAR-2013-KimuraHUIOK
- The Reading-Life Log — Technologies to Recognize Texts That We Read (TK, RH, SU, MI, SO, KK), pp. 91–95.
- ICDAR-2011-LiwickiAUIOK #online #reliability
- Reliable Online Stroke Recovery from Offline Data with the Data-Embedding Pen (ML, AY, SU, MI, SO, KK), pp. 1384–1388.
- DRR-2010-KatsuyamaMHOK #classification
- A new pre-classification method based on associative matching method (YK, AM, YH, SO, NK), pp. 1–10.
- DRR-2009-IwamuraNHKUO #documentation #image
- Layout-free dewarping of planar document images (MI, RN, AH, KK, SU, SO), pp. 1–10.
- ICDAR-2009-IwataKNIUO #documentation #image
- Capturing Digital Ink as Retrieving Fragments of Document Images (KI, KK, TN, MI, SU, SO), pp. 1236–1240.
- ICDAR-2009-UchidaHIOK
- Conspicuous Character Patterns (SU, RH, MI, SO, KK), pp. 16–20.
- ICDAR-2007-UchidaSIOK #embedded
- Extraction of Embedded Class Information from Universal Character Pattern (SU, MS, MI, SO, KK), pp. 437–441.
- ICPR-v2-2006-OmachiIUK #invariant #recognition
- Affine Invariant Information Embedment for Accurate Camera-Based Character Recognition (SO, MI, SU, KK), pp. 1098–1101.
- ICPR-v2-2006-UchidaIOK #recognition
- OCR Fonts Revisited for Camera-Based Character Recognition (SU, MI, SO, KK), pp. 1134–1137.
- ICDAR-2005-IwamuraNOA #recognition
- Isolated Character Recognition by Searching Feature Points (MI, KN, SO, HA), pp. 1035–1039.
- ICPR-v1-2004-OmachiSA #estimation #precise #recognition
- Precise Estimation of High-Dimensional Distribution and Its Application to Face Recognition (SO, FS, HA), pp. 220–223.
- ICPR-v4-2004-TaguchiOA #performance #using #visual notation
- Fast Visual Search Using Simplified Pruning Rules — Streamlined Active Search (ST, SO, HA), pp. 937–940.
- ICPR-v2-2002-UjiieOA
- A Discriminant Function Considering Normality Improvement of the Distribution (HU, SO, HA), pp. 224–227.
- ICPR-v2-2000-IwamuraOA #estimation #fault
- A Modification of Eigenvalues to Compensate Estimation Errors of Eigenvectors (MI, SO, HA), pp. 2378–2381.
- ICPR-v2-2000-KatoOA #modelling #precise #recognition #using
- Precise Hand-printed Character Recognition Using Elastic Models via Nonlinear Transformation (TK, SO, HA), pp. 2364–2367.
- ICPR-v2-2000-SunOKAKT #algorithm #approximate #distance #reduction
- Two-Stage Computational Cost Reduction Algorithm Based on Mahalanobis Distance Approximations (FS, SO, NK, HA, SK, TT), pp. 2696–2699.
- ICPR-v4-2000-OmachiIA #image #multi #using
- Structure Extraction from Various Kinds of Decorated Characters Using Multi-Scale Images (SO, MI, HA), pp. 4455–4458.
- ICPR-1998-SunOA #algorithm #multi #recognition #taxonomy
- An algorithm for constructing a multi-template dictionary for character recognition considering distribution of feature vectors (FS, SO, HA), pp. 1114–1116.