Travelled to:
1 × United Kingdom
3 × China
4 × USA
Collaborated with:
J.Cheng W.Ng S.Chu L.Zhu J.X.Yu C.Cheng A.Lu Z.Xu Y.Wang H.Cheng Y.Zhu L.Qin X.Lin A.W.Fu H.Wu S.Huang Y.Lu Y.Xu
Talks about:
graph (8) approach (3) process (3) effici (3) queri (3) larg (3) databas (2) correl (2) maxim (2) cliqu (2)
Person: Yiping Ke
DBLP: Ke:Yiping
Contributed to:
Wrote 10 papers:
- VLDB-2014-WuCHKLX #graph #problem
- Path Problems in Temporal Graphs (HW, JC, SH, YK, YL, YX), pp. 721–732.
- KDD-2012-ChengZKC #algorithm #clique #memory management #performance
- Fast algorithms for maximal clique enumeration with limited memory (JC, LZ, YK, SC), pp. 1240–1248.
- SIGMOD-2012-ChengKCC #approach #distance #graph #performance #query #scalability
- Efficient processing of distance queries in large graphs: a vertex cover approach (JC, YK, SC, CC), pp. 457–468.
- SIGMOD-2012-XuKWCC #approach #clustering #graph #modelling
- A model-based approach to attributed graph clustering (ZX, YK, YW, HC, JC), pp. 505–516.
- CIKM-2011-ZhuQYKL #graph #performance #quality #scalability
- High efficiency and quality: large graphs matching (YZ, LQ, JXY, YK, XL), pp. 1755–1764.
- SIGMOD-2010-ChengKFYZ #clique #network
- Finding maximal cliques in massive networks by H*-graph (JC, YK, AWCF, JXY, LZ), pp. 447–458.
- CIKM-2009-ChengKN #graph #performance #query #scalability
- Efficient processing of group-oriented connection queries in a large graph (JC, YK, WN), pp. 1481–1484.
- KDD-2007-KeCN #correlation #database #graph
- Correlation search in graph databases (YK, JC, WN), pp. 390–399.
- SIGMOD-2007-ChengKNL #database #graph #named #query #towards
- Fg-index: towards verification-free query processing on graph databases (JC, YK, WN, AL), pp. 857–872.
- KDD-2006-KeCN #approach #correlation #mining #using
- Mining quantitative correlated patterns using an information-theoretic approach (YK, JC, WN), pp. 227–236.