Travelled to:
1 × Canada
1 × Turkey
1 × USA
1 × United Kingdom
2 × China
Collaborated with:
R.P.W.Duin T.Landgrebe J.Novovicová C.Lai S.Verzakov G.M.P.v.Kempen R.Kohlus
Talks about:
class (3) roc (3) analysi (2) multi (2) oper (2) imag (2) characterist (1) backscatt (1) algorithm (1) trainabl (1)
Person: Pavel Paclík
DBLP: Pacl=iacute=k:Pavel
Contributed to:
Wrote 6 papers:
- ICPR-2010-PaclikLLD #analysis #classification #optimisation
- ROC Analysis and Cost-Sensitive Optimization for Hierarchical Classifiers (PP, CL, TL, RPWD), pp. 2977–2980.
- ICPR-2008-PaclikLND #analysis #estimation #multi #using
- Variance estimation for two-class and multi-class ROC analysis using operating point averaging (PP, CL, JN, RPWD), pp. 1–4.
- ICPR-v3-2006-PaclikND #classification #image #similarity
- A Trainable Similarity Measure for Image Classification (PP, JN, RPWD), pp. 391–394.
- ICPR-v4-2006-LandgrebePD
- Precision-recall operating characteristic (P-ROC) curves in imprecise environments (TL, PP, RPWD), pp. 123–127.
- ICPR-v4-2004-PaclikVD #algorithm #feature model #multi
- Multi-Class Extensions of the GLDB Feature Extraction Algorithm for Spectral Data (PP, SV, RPWD), pp. 629–632.
- ICPR-v2-2002-PaclikDKK #image #segmentation
- Supervised Segmentation of Textures in Backscatter Images (PP, RPWD, GMPvK, RK), pp. 490–493.