BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
algorithm (6)
sat (4)
random (3)
ident (2)
hard (2)

Stem derandom$ (all stems)

17 papers:

STOCSTOC-2014-GoldreichW #algorithm #on the
On derandomizing algorithms that err extremely rarely (OG, AW), pp. 109–118.
STOCSTOC-2013-Williams #proving
Natural proofs versus derandomization (RW), pp. 21–30.
STOCSTOC-2011-MoserS #algorithm #satisfiability
A full derandomization of schöning’s k-SAT algorithm (RAM, DS), pp. 245–252.
ICALPICALP-v2-2009-CooperIKK #graph #random #using
Derandomizing Random Walks in Undirected Graphs Using Locally Fair Exploration Strategies (CC, DI, RK, AK), pp. 411–422.
STOCSTOC-2008-ImpagliazzoJKW #theorem
Uniform direct product theorems: simplified, optimized, and derandomized (RI, RJ, VK, AW), pp. 579–588.
STOCSTOC-2006-Impagliazzo #algorithm #question #random
Can every randomized algorithm be derandomized? (RI), pp. 373–374.
STOCSTOC-2005-AggarwalFGHIS
Derandomization of auctions (GA, AF, AVG, JDH, NI, MS), pp. 619–625.
ICSTSAT-J-2004-DantsinW05 #algorithm #satisfiability
Derandomization of Schuler’s Algorithm for SAT (ED, AW), pp. 80–88.
ICSTSAT-2005-Rolf #satisfiability
Derandomization of PPSZ for Unique- k-SAT (DR), pp. 216–225.
STOCSTOC-2004-ShpilkaW #morphism #testing
Derandomizing homomorphism testing in general groups (AS, AW), pp. 427–435.
SATSAT-2004-DantsinW #algorithm #satisfiability
Derandomization of Schuler’s Algorithm for SAT (ED, AW), pp. 69–75.
STOCSTOC-2003-KabanetsI #bound #polynomial #proving #testing
Derandomizing polynomial identity tests means proving circuit lower bounds (VK, RI), pp. 355–364.
STOCSTOC-2002-Sivakumar #algorithm #complexity
Algorithmic derandomization via complexity theory (DS), pp. 619–626.
STOCSTOC-1998-LewinV #polynomial #question #towards
Checking Polynomial Identities over any Field: Towards a Derandomization? (DL, SPV), pp. 438–447.
STOCSTOC-1997-ImpagliazzoW #exponential
P = BPP if E Requires Exponential Circuits: Derandomizing the XOR Lemma (RI, AW), pp. 220–229.
ICALPICALP-1997-AndreevCR #trade-off #worst-case
Worst-Case Hardness Suffices for Derandomization: A New Method for Hardness-Randomness Trade-Offs (AEA, AEFC, JDPR), pp. 177–187.
ICALPICALP-1996-AndreevCR #set
Hitting Sets Derandomize BPP (AEA, AEFC, JDPR), pp. 357–368.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.