BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
lung (11)
imag (9)
use (8)
diagnosi (5)
svm (3)

Stem nodul$ (all stems)

15 papers:

CASECASE-2014-ChiuC #bound #detection #image
A variance-reduction method for thyroid nodule boundary detection on ultrasound images (LYC, AC), pp. 681–685.
MLDMMLDM-2012-NascimentoPS #classification #image #using
Lung Nodules Classification in CT Images Using Shannon and Simpson Diversity Indices and SVM (LBN, ACdP, ACS), pp. 454–466.
ICPRICPR-2010-FaragGEF #data-driven #detection #modelling #robust
Data-Driven Lung Nodule Models for Robust Nodule Detection in Chest CT (AAF, JHG, SE, AAF), pp. 2588–2591.
MLDMMLDM-2009-SilvaSNPJN #classification #geometry #image #metric #using
Lung Nodules Classification in CT Images Using Simpson’s Index, Geometrical Measures and One-Class SVM (CAdS, ACS, SMBN, ACdP, GBJ, RAN), pp. 810–822.
ICPRICPR-2008-El-BazGFE #3d #analysis #approach #automation #detection #image #monitoring
A new approach for automatic analysis of 3D low dose CT images for accurate monitoring the detected lung nodules (AEB, GLG, RF, MAEG), pp. 1–4.
ICPRICPR-2008-SuzukiSZ #network
Supervised enhancement of lung nodules by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD) (KS, ZS, JZ), pp. 1–4.
ICPRICPR-v3-2006-El-BazFGFEE #automation #framework #segmentation
A Framework for Automatic Segmentation of Lung Nodules from Low Dose Chest CT Scans (AEB, AAF, GLG, RF, MAEG, TE), pp. 611–614.
MLDMMLDM-2005-SilvaJNP #geometry #learning #metric #using
Diagnosis of Lung Nodule Using Reinforcement Learning and Geometric Measures (ACS, VRdSJ, AdAN, ACdP), pp. 295–304.
MLDMMLDM-2005-SilvaPO #comparison
Comparison of FLDA, MLP and SVM in Diagnosis of Lung Nodule (ACS, ACdP, ACMdO), pp. 285–294.
ICPRICPR-v4-2004-NakamuraFTMYMTI #image #recognition #using
Eigen Nodule: View-Based Recognition of Lung Nodule in Chest X-ray CT Images Using Subspace Method (YN, GF, HT, SM, SY, TM, YT, TI), pp. 681–684.
SACSAC-2004-SilvaCG #image #using
Diagnosis of lung nodule using Gini coefficient and skeletonization in computerized tomography images (ACS, PCPC, MG), pp. 243–248.
ICPRICPR-v1-2002-TakizawaYMTIM #3d #image #markov #modelling #random #recognition #using
Recognition of Lung Nodules from X-ray CT Images Using 3D Markov Random Field Models (HT, SY, TM, YT, TI, MM), pp. 99–102.
ICPRICPR-v4-2000-KawataNOKKKMMNE #analysis
Computerized Analysis of Pulmonary Nodules in Topological and Histogram Feature Spaces (YK, NN, HO, RK, MK, MK, NM, KM, HN, KE), pp. 4332–4335.
ICPRICPR-1998-KanazawaKNSOK #image
Computer-aided diagnosis for pulmonary nodules based on helical CT images (KK, YK, NN, HS, HO, RK), pp. 1683–1685.
ICPRICPR-1998-KawataNOKMEKM #analysis #image #using
Curvature based analysis of pulmonary nodules using thin-section CT images (YK, NN, HO, RK, KM, KE, MK, NM), pp. 361–363.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.