10 papers:
ICML-2015-Betancourt #monte carlo #scalability- The Fundamental Incompatibility of Scalable Hamiltonian Monte Carlo and Naive Data Subsampling (MB), pp. 533–540.
ICML-2015-ChazalFLMRW #persistent- Subsampling Methods for Persistent Homology (FC, BF, FL, BM, AR, LAW), pp. 2143–2151.
ICML-2015-GongZSTG- Discovering Temporal Causal Relations from Subsampled Data (MG, KZ, BS, DT, PG), pp. 1898–1906.
ICML-c1-2014-BardenetDH #adaptation #approach #markov #monte carlo #scalability #towards- Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach (RB, AD, CCH), pp. 405–413.
ICPR-2014-PakKA #detection #probability- Improvement of Benign and Malignant Probability Detection Based on Non-subsample Contourlet Transform and Super-resolution (FP, HRK, AA), pp. 895–899.
DRR-2013-ZhuHZ #image #recognition #retrieval #using- Rotation-robust math symbol recognition and retrieval using outer contours and image subsampling (SZ, LH, RZ).
ICML-c3-2013-MineiroK- Loss-Proportional Subsampling for Subsequent ERM (PM, NK), pp. 522–530.
KDD-2013-ZimekGCS #detection #effectiveness #performance- Subsampling for efficient and effective unsupervised outlier detection ensembles (AZ, MG, RJGBC, JS), pp. 428–436.
ICDAR-2001-BloombergPM #documentation #heuristic #image #using- Document Image Decoding Using Iterated Complete Path Search with Subsampled Heuristic Scoring (DSB, KP, TPM), pp. 344–349.
ICML-1993-MusickCR #database #induction #scalability- Decision Theoretic Subsampling for Induction on Large Databases (RM, JC, SJR), pp. 212–219.