BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
scalability
Google scalability

Tag #scalability

3391 papers:

ASPLOSASPLOS-2020-MinBLNK #architecture #effectiveness #named #performance
CryoCache: A Fast, Large, and Cost-Effective Cache Architecture for Cryogenic Computing (DM, IB, GhL, SN, JK), pp. 449–464.
CCCC-2020-FegadeW #analysis #data type #modelling #pointer #semantics #using
Scalable pointer analysis of data structures using semantic models (PF, CW), pp. 39–50.
CCCC-2020-ThakurN #context-sensitive grammar
Mix your contexts well: opportunities unleashed by recent advances in scaling context-sensitivity (MT, VKN), pp. 27–38.
CGOCGO-2020-KangCP #framework #named #performance #precise
PreScaler: an efficient system-aware precision scaling framework on heterogeneous systems (SK, KC, YP), pp. 280–292.
CGOCGO-2020-WangYZM #hardware #memory management #performance #transaction
Efficient and scalable cross-ISA virtualization of hardware transactional memory (WW, PCY, AZ, SM), pp. 107–120.
EDMEDM-2019-ChenLFG #online #predict #student #tutorial
Predictors of Student Satisfaction: A Large-scale Study of Human-Human Online Tutorial Dialogues (GC, DL, RF, DG).
EDMEDM-2019-ChristieJOT
Machine-Learned School Dropout Early Warning at Scale (STC, DCJ, LAO, TTT).
ICPCICPC-2019-LevyF #comprehension #perspective
Understanding large-scale software: a hierarchical view (OL, DGF), pp. 283–293.
ICPCICPC-2019-WenNBL #consistency #empirical #nondeterminism
A large-scale empirical study on code-comment inconsistencies (FW, CN0, GB, ML), pp. 53–64.
ICSMEICSME-2019-LevinY #dataset #source code
Processing Large Datasets of Fined Grained Source Code Changes (SL, AY), pp. 382–385.
ICSMEICSME-2019-Wright #lessons learnt #refactoring
Lessons Learned from Large-Scale Refactoring (HW), p. 366.
MSRMSR-2019-GoteSS #git #mining #named #network #repository
git2net: mining time-stamped co-editing networks from large git repositories (CG, IS, FS), pp. 433–444.
MSRMSR-2019-Owhadi-KareshkN
Scalable software merging studies with MergAnser (MOK, SN), pp. 560–564.
MSRMSR-2019-PimentelMBF #quality
A large-scale study about quality and reproducibility of jupyter notebooks (JFP, LM, VB, JF), pp. 507–517.
MSRMSR-2019-Rua0S #android #energy #metric #named #testing
GreenSource: a large-scale collection of Android code, tests and energy metrics (RR, MC0, JS), pp. 176–180.
SANERSANER-2019-FengMYXBWWTXSLH #open source
Open-Source License Violations of Binary Software at Large Scale (MF, WM, ZY, YX, GB, WW, SW, QT, JX, HS, BL, WH), pp. 564–568.
SANERSANER-2019-WlodarskiPPFZ #exclamation #legacy
Qualify First! A Large Scale Modernisation Report (LW, BP, IP, JF, VZ), pp. 569–573.
SCAMSCAM-2019-PaixaoM #code review #empirical #harmful #overview
Rebasing in Code Review Considered Harmful: A Large-Scale Empirical Investigation (MP, PHMM), pp. 45–55.
SCAMSCAM-2019-TiwariPG0 #analysis #android #named #web
LUDroid: A Large Scale Analysis of Android - Web Hybridization (AT, JP, SG, CH0), pp. 256–267.
FMFM-2019-SuP0 #network
Controlling Large Boolean Networks with Temporary and Permanent Perturbations (CS, SP, JP0), pp. 707–724.
CoGCoG-2019-AmarTAM #multi #towards
Towards Cheap Scalable Browser Multiplayer (YA, GT, GA, LM), pp. 1–4.
CoGCoG-2019-KantharajuOG #monte carlo #recognition
Scaling up CCG-Based Plan Recognition via Monte-Carlo Tree Search (PK, SO, CWG), pp. 1–8.
FDGFDG-2019-Poor #community #game studies #online #product line
Building and sustaining large, long-term online communities: family business and gamifying the game (NP), p. 12.
CIKMCIKM-2019-BoiarovT #learning #metric #recognition
Large Scale Landmark Recognition via Deep Metric Learning (AB, ET), pp. 169–178.
CIKMCIKM-2019-ChenMLZM #dataset #named #web
TianGong-ST: A New Dataset with Large-scale Refined Real-world Web Search Sessions (JC, JM, YL, MZ0, SM), pp. 2485–2488.
CIKMCIKM-2019-FanBSL #classification #fine-grained #network #prototype
Large Margin Prototypical Network for Few-shot Relation Classification with Fine-grained Features (MF, YB, MS, PL0), pp. 2353–2356.
CIKMCIKM-2019-FanHZLLW #learning #named
MONOPOLY: Learning to Price Public Facilities for Revaluing Private Properties with Large-Scale Urban Data (MF, JH, AZ, YL, PL0, HW), pp. 2655–2663.
CIKMCIKM-2019-KangM #generative #recommendation
Candidate Generation with Binary Codes for Large-Scale Top-N Recommendation (WCK, JJM), pp. 1523–1532.
CIKMCIKM-2019-LvJYSLYN #named #online #recommendation
SDM: Sequential Deep Matching Model for Online Large-scale Recommender System (FL, TJ, CY, FS, QL, KY, WN), pp. 2635–2643.
CIKMCIKM-2019-WuH #network
Scalable Manifold-Regularized Attributed Network Embedding via Maximum Mean Discrepancy (JW, JH), pp. 2101–2104.
CIKMCIKM-2019-XuHY #graph #learning #network
Scalable Causal Graph Learning through a Deep Neural Network (CX, HH, SY), pp. 1853–1862.
CIKMCIKM-2019-ZhaoPZZWZXJ #distributed #graph #visual notation
Large-Scale Visual Search with Binary Distributed Graph at Alibaba (KZ, PP, YZ, YZ, CW, YZ, YX, RJ), pp. 2567–2575.
ICMLICML-2019-AndertonA #approach
Scaling Up Ordinal Embedding: A Landmark Approach (JA, JAA), pp. 282–290.
ICMLICML-2019-BackursIOSVW #clustering
Scalable Fair Clustering (AB, PI, KO, BS, AV, TW), pp. 405–413.
ICMLICML-2019-ChenXHY #named #problem
Katalyst: Boosting Convex Katayusha for Non-Convex Problems with a Large Condition Number (ZC, YX, HH, TY), pp. 1102–1111.
ICMLICML-2019-ChenYWLYLL #multi
Multivariate-Information Adversarial Ensemble for Scalable Joint Distribution Matching (ZC, ZY, XW, XL, XY, GL, LL), pp. 1112–1121.
ICMLICML-2019-CornishVBDD #dataset
Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets (RC, PV, ABC, GD, AD), pp. 1351–1360.
ICMLICML-2019-FongLH #multimodal #parametricity
Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap (EF, SL, CCH), pp. 1952–1962.
ICMLICML-2019-JangJ #clustering #performance #towards
DBSCAN++: Towards fast and scalable density clustering (JJ, HJ), pp. 3019–3029.
ICMLICML-2019-KurachLZMG #normalisation
A Large-Scale Study on Regularization and Normalization in GANs (KK, ML, XZ, MM, SG), pp. 3581–3590.
ICMLICML-2019-MagnussonAJV
Bayesian leave-one-out cross-validation for large data (MM, MRA, JJ, AV), pp. 4244–4253.
ICMLICML-2019-OglicG #kernel #learning
Scalable Learning in Reproducing Kernel Krein Spaces (DO, TG0), pp. 4912–4921.
ICMLICML-2019-ShiK0 #modelling #network
Scalable Training of Inference Networks for Gaussian-Process Models (JS, MEK, JZ0), pp. 5758–5768.
ICMLICML-2019-TanL #named #network
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (MT, QVL), pp. 6105–6114.
ICMLICML-2019-TiomokoCBG #estimation #matrix #metric #random
Random Matrix Improved Covariance Estimation for a Large Class of Metrics (MT, RC, FB, GG), pp. 6254–6263.
ICMLICML-2019-UurtioBR #analysis #canonical #correlation #kernel
Large-Scale Sparse Kernel Canonical Correlation Analysis (VU, SB, JR), pp. 6383–6391.
ICMLICML-2019-XieCJZZ #on the #performance
On Scalable and Efficient Computation of Large Scale Optimal Transport (YX, MC, HJ, TZ, HZ), pp. 6882–6892.
KDDKDD-2019-0009ZGZNQH #framework #graph #named #recommendation
IntentGC: A Scalable Graph Convolution Framework Fusing Heterogeneous Information for Recommendation (JZ0, ZZ, ZG, WZ0, WN, GQ, XH), pp. 2347–2357.
KDDKDD-2019-AroraC0KLLMTTW
Hard to Park?: Estimating Parking Difficulty at Scale (NA, JC, RK0, IK, YL, HJL, AM, AT, IT, YW), pp. 2296–2304.
KDDKDD-2019-Chang #clique #graph #performance
Efficient Maximum Clique Computation over Large Sparse Graphs (LC), pp. 529–538.
KDDKDD-2019-ChiangLSLBH #algorithm #clustering #graph #named #network #performance
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks (WLC, XL, SS, YL0, SB, CJH), pp. 257–266.
KDDKDD-2019-FoucheKB #algorithm #multi
Scaling Multi-Armed Bandit Algorithms (EF, JK, KB), pp. 1449–1459.
KDDKDD-2019-HwangLVGXN #framework #video
Large-Scale Training Framework for Video Annotation (SJH, JL, BV, AG, ZX, AN), pp. 2394–2402.
KDDKDD-2019-LiX #data mining #mining #named #privacy
PrivPy: General and Scalable Privacy-Preserving Data Mining (YL, WX), pp. 1299–1307.
KDDKDD-2019-MaZXLCXWW #comprehension #framework
Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework (XM, LZ, LX, ZL, GC, ZX, YW, ZW), pp. 2403–2411.
KDDKDD-2019-MonathKKGM #clustering
Scalable Hierarchical Clustering with Tree Grafting (NM, AK, AK, MRG, AM), pp. 1438–1448.
KDDKDD-2019-MoosaviS00R
Short and Long-term Pattern Discovery Over Large-Scale Geo-Spatiotemporal Data (SM, MHS, AN0, SP0, RR), pp. 2905–2913.
KDDKDD-2019-PasumarthiBWLBN #library #named #ranking
TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank (RKP, SB, XW, CL0, MB, MN, JP, NG, RA, SW), pp. 2970–2978.
KDDKDD-2019-RamanSMZYV #hybrid #parallel
Scaling Multinomial Logistic Regression via Hybrid Parallelism (PR, SS, SM, XZ, HY, SVNV), pp. 1460–1470.
KDDKDD-2019-Ramdas
Foundations of Large-Scale Sequential Experimentation (AR), pp. 3211–3212.
KDDKDD-2019-Sundaresan #developer
From Code to Data: AI at Scale for Developer Productivity (NS), p. 3175.
KDDKDD-2019-TangBMLLK #classification #e-commerce #image #named
MSURU: Large Scale E-commerce Image Classification with Weakly Supervised Search Data (YT, FB, SM, YL, YL, SK), pp. 2518–2526.
KDDKDD-2019-Thondikulam #approach #ml
Analytics Journey Map: An Approach Enable to ML at Scale (GT), p. 3167.
KDDKDD-2019-TranS #feature model #predict
Seasonal-adjustment Based Feature Selection Method for Predicting Epidemic with Large-scale Search Engine Logs (TQT, JS), pp. 2857–2866.
KDDKDD-2019-WuYZXZPXA #graph #kernel #random #using
Scalable Global Alignment Graph Kernel Using Random Features: From Node Embedding to Graph Embedding (LW, IEHY, ZZ0, KX, LZ0, XP0, YX, CCA), pp. 1418–1428.
KDDKDD-2019-YangZZX0 #adaptation #capacity #incremental #learning #modelling
Adaptive Deep Models for Incremental Learning: Considering Capacity Scalability and Sustainability (YY, DWZ, DCZ, HX, YJ0), pp. 74–82.
KDDKDD-2019-YinW #graph
Scalable Graph Embeddings via Sparse Transpose Proximities (YY, ZW), pp. 1429–1437.
KDDKDD-2019-ZhangLTDYZGWSLW #graph #named #towards
OAG: Toward Linking Large-scale Heterogeneous Entity Graphs (FZ, XL, JT, YD, PY, JZ, XG, YW, BS, RL, KW), pp. 2585–2595.
KDDKDD-2019-ZheSX #community #detection #network
Community Detection on Large Complex Attribute Network (CZ, AS, XX), pp. 2041–2049.
ECOOPECOOP-2019-VillazonSRRBDOB #automation #multi #program analysis
Automated Large-Scale Multi-Language Dynamic Program Analysis in the Wild (Tool Insights Paper) (AV, HS, AR, ER, DB, ID, SO, WB), p. 27.
OOPSLAOOPSLA-2019-KrikavaMV #scala #using
Scala implicits are everywhere: a large-scale study of the use of Scala implicits in the wild (FK, HM, JV), p. 28.
OOPSLAOOPSLA-2019-SongLO #automation #detection #fault #functional #logic #programming
Automatic and scalable detection of logical errors in functional programming assignments (DS, ML, HO), p. 30.
PLDIPLDI-2019-ChibotaruBRV #specification
Scalable taint specification inference with big code (VC, BB, VR, MTV), pp. 760–774.
PLDIPLDI-2019-SmolkaKKFHK0 #network #probability #verification
Scalable verification of probabilistic networks (SS, PK0, DMK, NF, JH, DK, AS0), pp. 190–203.
PLDIPLDI-2019-VasilakisKPSDS #named
Ignis: scaling distribution-oblivious systems with light-touch distribution (NV, BK, YP, JS, AD, JMS), pp. 1010–1026.
ASEASE-2019-ChenD0Q #comprehension #debugging
Understanding Exception-Related Bugs in Large-Scale Cloud Systems (HC, WD, YJ0, FQ), pp. 339–351.
ASEASE-2019-ChenHLZHGXDZ #online
Continuous Incident Triage for Large-Scale Online Service Systems (JC, XH, QL, HZ, DH, FG, ZX, YD, DZ), pp. 364–375.
ASEASE-2019-DavisMKL #metric #regular expression #testing
Testing Regex Generalizability And Its Implications: A Large-Scale Many-Language Measurement Study (JCD, DM, AMK, DL), pp. 427–439.
ASEASE-2019-ZamanHY #concurrent #fault #named
SCMiner: Localizing System-Level Concurrency Faults from Large System Call Traces (TSZ, XH, TY), pp. 515–526.
ASEASE-2019-ZhengLZLZD #detection #feedback #named #online #realtime
iFeedback: Exploiting User Feedback for Real-Time Issue Detection in Large-Scale Online Service Systems (WZ, HL, YZ, JL, HZ, YD), pp. 352–363.
ESEC-FSEESEC-FSE-2019-AsthanaKBBBMMA #automation #named
WhoDo: automating reviewer suggestions at scale (SA, RK0, RB, CB, CB, CSM, SM, BA), pp. 937–945.
ESEC-FSEESEC-FSE-2019-BabicBCIKKLSW #generative #named
FUDGE: fuzz driver generation at scale (DB, SB, YC, FI, TK, MK, CL, LS, WW), pp. 975–985.
ESEC-FSEESEC-FSE-2019-BagherzadehK #big data #developer #what
Going big: a large-scale study on what big data developers ask (MB, RK), pp. 432–442.
ESEC-FSEESEC-FSE-2019-DurieuxDMA #debugging #empirical #java #overview #program repair #tool support
Empirical review of Java program repair tools: a large-scale experiment on 2, 141 bugs and 23, 551 repair attempts (TD, FM, MM, RA), pp. 302–313.
ESEC-FSEESEC-FSE-2019-Fu #analysis #distributed #on the
On the scalable dynamic taint analysis for distributed systems (XF), pp. 1247–1249.
ESEC-FSEESEC-FSE-2019-He #comprehension #source code
Understanding source code comments at large-scale (HH), pp. 1217–1219.
ESEC-FSEESEC-FSE-2019-MaddilaBN #case study #predict
Predicting pull request completion time: a case study on large scale cloud services (CSM, CB, NN), pp. 874–882.
ESEC-FSEESEC-FSE-2019-Zhang0C0Z #compilation #empirical #fault #integration
A large-scale empirical study of compiler errors in continuous integration (CZ, BC0, LC, XP0, WZ), pp. 176–187.
ICSE-2019-CrucianiMVB #reduction #testing
Scalable approaches for test suite reduction (EC, BM, RV, AB), pp. 419–429.
ICSE-2019-FanWS0ZZ #detection #memory management #named
Smoke: scalable path-sensitive memory leak detection for millions of lines of code (GF, RW, QS, XX0, JZ, CZ), pp. 72–82.
ICSE-2019-Ketkar0MDA #migration
Type migration in ultra-large-scale codebases (AK, AM0, DM, DD, EA), pp. 1142–1153.
ICSE-2019-PhilipBKMN #named #online
FastLane: test minimization for rapidly deployed large-scale online services (AAP, RB, RK0, CSM, NN), pp. 408–418.
ASPLOSASPLOS-2019-GaoYPHK #data flow #named
TANGRAM: Optimized Coarse-Grained Dataflow for Scalable NN Accelerators (MG, XY, JP, MH, CK), pp. 807–820.
ASPLOSASPLOS-2019-JiangSF0 #approach #parallel
Scalable Processing of Contemporary Semi-Structured Data on Commodity Parallel Processors - A Compilation-based Approach (LJ, XS, UF, ZZ0), pp. 79–92.
ASPLOSASPLOS-2019-KimMKRM #multi #named
MV-RLU: Scaling Read-Log-Update with Multi-Versioning (JK, AM, SK, MKR, CM), pp. 779–792.
ASPLOSASPLOS-2019-ZhangZWLFZS #framework #performance
Fast and Scalable VMM Live Upgrade in Large Cloud Infrastructure (XZ, XZ, ZW0, QL0, JF, YZ, YS), pp. 93–105.
CASECASE-2019-KrupkeSHPDGLSHK #automation #distributed #retrieval
Automated Data Retrieval from Large-Scale Distributed Satellite Systems (DK, VS, AH, MP, JD, BG, MKBL, ES, TH, HK, KFP, MC, CS, SPF), pp. 1789–1795.
CASECASE-2019-RiaziDFBL #flexibility #scheduling
Scheduling and Routing of AGVs for Large-scale Flexible Manufacturing Systems (SR, TD, PF, KB, BL), pp. 891–896.
CASECASE-2019-WangJRH #image #realtime #using
Real-time control for large scale additive manufacturing using thermal images (FW, FJ, KR, NH), pp. 36–41.
CASECASE-2019-WarsewaBRST #design #distributed #using
Decentralized and Distributed Observer Design for Large-Scale Structures using Dynamic Condensation (AW, MB, PR, OS, CT), pp. 1256–1262.
CCCC-2019-ThakurN #analysis
Compare less, defer more: scaling value-contexts based whole-program heap analyses (MT, VKN), pp. 135–146.
CADECADE-2019-Tammet #knowledge base #named #reasoning
GKC: A Reasoning System for Large Knowledge Bases (TT), pp. 538–549.
ICSTICST-2019-JendeleSCJR #automation #composition #performance
Efficient Automated Decomposition of Build Targets at Large-Scale (LJ, MS, DC, IJ, MR), pp. 457–464.
ICSTICST-2019-SaumyaK0B #automation #generative #testing #worst-case
XSTRESSOR : Automatic Generation of Large-Scale Worst-Case Test Inputs by Inferring Path Conditions (CS, JK, MK0, SB), pp. 1–12.
ICSTICST-2019-ZhongZK #named #testing #web #web service
TestSage: Regression Test Selection for Large-Scale Web Service Testing (HZ, LZ, SK), pp. 430–440.
VMCAIVMCAI-2019-LopesR #performance #simulation
Fast BGP Simulation of Large Datacenters (NPL, AR), pp. 386–408.
ECSAECSA-2018-BuchgeherWH #architecture #automation #framework #platform
A Platform for the Automated Provisioning of Architecture Information for Large-Scale Service-Oriented Software Systems (GB, RW, HH), pp. 203–218.
ECSAECSA-2018-MartiniFBR #architecture #case study #identification #smell
Identifying and Prioritizing Architectural Debt Through Architectural Smells: A Case Study in a Large Software Company (AM, FAF, AB, RR), pp. 320–335.
ICSAICSA-2018-GuptaUBDRF #framework #platform
The Anatomy of a Large-Scale Experimentation Platform (SG, LU, SB, PAD, PR, AF), pp. 1–10.
ICSAICSA-2018-LiuBDKRRSH #automation #execution #framework #simulation #workflow
A Generic and Highly Scalable Framework for the Automation and Execution of Scientific Data Processing and Simulation Workflows (JL, EB, CD, PK, DSR, MR, DS, VH), pp. 145–155.
EDMEDM-2018-ChenLCBC #analysis #behaviour #learning
Behavioral Analysis at Scale: Learning Course Prerequisite Structures from Learner Clickstreams (WC, ASL, DC, CGB, MC).
ICPCICPC-2018-ScarsbrookKR0 #debugging #javascript #named #visualisation
MetropolJS: visualizing and debugging large-scale javascript program structure with treemaps (JDS, RKLK, BR, DB0), pp. 389–392.
ICSMEICSME-2018-AghajaniNBL #api #empirical
A Large-Scale Empirical Study on Linguistic Antipatterns Affecting APIs (EA, CN0, GB, ML), pp. 25–35.
MSRMSR-2018-CohenC08 #analysis #developer #git #repository
Large-scale analysis of the co-commit patterns of the active developers in github's top repositories (EC, MPC), pp. 426–436.
MSRMSR-2018-NayrollesH #clone detection #detection #fault #industrial #metric #named
CLEVER: combining code metrics with clone detection for just-in-time fault prevention and resolution in large industrial projects (MN, AHL), pp. 153–164.
MSRMSR-2018-SahaLLYP #dataset #debugging #java
Bugs.jar: a large-scale, diverse dataset of real-world Java bugs (RKS, YL, WL, HY, MRP), pp. 10–13.
MSRMSR-2018-WangLL0X #android #empirical #game studies #why
Why are Android apps removed from Google Play?: a large-scale empirical study (HW, HL, LL0, YG0, GX), pp. 231–242.
SANERSANER-2018-KirbasCHCB0B #fault #industrial
The relationship between evolutionary coupling and defects in large industrial software (journal-first abstract) (SK, BC, TH, SC, DB, AS0, AB), p. 471.
SANERSANER-2018-LeemansAB18a #analysis #mining #process #statechart #using
The Statechart Workbench: Enabling scalable software event log analysis using process mining (ML, WMPvdA, MGJvdB), pp. 502–506.
CoGCIG-2018-AungBDCKYW #dataset #learning #predict
Predicting Skill Learning in a Large, Longitudinal MOBA Dataset (MA, VB, AD, PIC, AVK, CY, ARW), pp. 1–7.
ICGJICGJ-2018-WirmanJ
Regional Character at a Large-Scale Jam: GGJ Hong Kong 2013-2018 (HW, RJ), pp. 48–51.
CIKMCIKM-2018-AfsharPPSHS #dataset #named
COPA: Constrained PARAFAC2 for Sparse & Large Datasets (AA, IP, EEP, ES, JCH, JS), pp. 793–802.
CIKMCIKM-2018-ANR #algorithm #generative #higher-order #using
A Scalable Algorithm for Higher-order Features Generation using MinHash (PA, NN, RR), pp. 1213–1222.
CIKMCIKM-2018-DingZB0 #graph #privacy
Privacy-Preserving Triangle Counting in Large Graphs (XD, XZ, ZB, HJ0), pp. 1283–1292.
CIKMCIKM-2018-Elghandour0OV #incremental #query
Incremental Techniques for Large-Scale Dynamic Query Processing (IE, AK0, DO, SV), pp. 2297–2298.
CIKMCIKM-2018-LiLAL #industrial #multi #named
CUSNTF: A Scalable Sparse Non-negative Tensor Factorization Model for Large-scale Industrial Applications on Multi-GPU (HL0, KL, JyA, KL0), pp. 1113–1122.
CIKMCIKM-2018-LinmansVK #detection #robust #semantics #using #web
Improved and Robust Controversy Detection in General Web Pages Using Semantic Approaches under Large Scale Conditions (JL, BvdV, EK), pp. 1647–1650.
CIKMCIKM-2018-NidzwetzkiG #big data #multi
BBoxDB - A Scalable Data Store for Multi-Dimensional Big Data (JKN, RHG), pp. 1867–1870.
CIKMCIKM-2018-RepkeKEHHKSSZ #corpus #email #interactive
Beacon in the Dark: A System for Interactive Exploration of Large Email Corpora (TR, RK, JE, MH, JH, DK, HS, NS, AZ), pp. 1871–1874.
CIKMCIKM-2018-WangYWJZZW #data mining #graph #mining #named
AceKG: A Large-scale Knowledge Graph for Academic Data Mining (RW, YY, JW, YJ, YZ, WZ0, XW), pp. 1487–1490.
CIKMCIKM-2018-ZhangNCC #database #parallel #probability #using
Scalable Entity Resolution Using Probabilistic Signatures on Parallel Databases (YZ, KSN, TC, PC), pp. 2213–2221.
ICMLICML-2018-0001ZK #constraints #privacy #summary
Scalable Deletion-Robust Submodular Maximization: Data Summarization with Privacy and Fairness Constraints (EK0, MZ, AK), pp. 2549–2558.
ICMLICML-2018-AghazadehSLDSB #feature model #named #sketching #using
MISSION: Ultra Large-Scale Feature Selection using Count-Sketches (AA, RS, DL, GD, AS, RGB), pp. 80–88.
ICMLICML-2018-AgrawalUB #graph #modelling
Minimal I-MAP MCMC for Scalable Structure Discovery in Causal DAG Models (RA, CU, TB), pp. 89–98.
ICMLICML-2018-Alabdulmohsin #empirical #optimisation
Information Theoretic Guarantees for Empirical Risk Minimization with Applications to Model Selection and Large-Scale Optimization (IMA), pp. 149–158.
ICMLICML-2018-CalandrielloKLV #graph #learning
Improved Large-Scale Graph Learning through Ridge Spectral Sparsification (DC, IK, AL, MV), pp. 687–696.
ICMLICML-2018-ChenLW #learning #using
Scalable Bilinear Learning Using State and Action Features (YC, LL0, MW), pp. 833–842.
ICMLICML-2018-ChoromanskiRSTW #architecture #evolution #optimisation #policy
Structured Evolution with Compact Architectures for Scalable Policy Optimization (KC, MR, VS, RET, AW), pp. 969–977.
ICMLICML-2018-EspeholtSMSMWDF #architecture #distributed #named
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures (LE, HS, RM, KS, VM, TW, YD, VF, TH, ID, SL, KK), pp. 1406–1415.
ICMLICML-2018-EvansN #process
Scalable Gaussian Processes with Grid-Structured Eigenfunctions (GP-GRIEF) (TWE, PBN), pp. 1416–1425.
ICMLICML-2018-FalknerKH #named #optimisation #performance #robust
BOHB: Robust and Efficient Hyperparameter Optimization at Scale (SF, AK, FH), pp. 1436–1445.
ICMLICML-2018-GibsonG #modelling #robust
Robust and Scalable Models of Microbiome Dynamics (TEG, GKG), pp. 1758–1767.
ICMLICML-2018-HanHZ #classification #estimation #multi #problem
Candidates vs. Noises Estimation for Large Multi-Class Classification Problem (LH, YH, TZ), pp. 1885–1894.
ICMLICML-2018-JohnH #fourier #process #using
Large-Scale Cox Process Inference using Variational Fourier Features (STJ, JH), pp. 2367–2375.
ICMLICML-2018-KhanNTLGS #learning #performance
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam (MEK, DN, VT, WL, YG, AS), pp. 2616–2625.
ICMLICML-2018-LiuCWO #process #robust
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression (HL, JC, YW, YSO), pp. 3137–3146.
ICMLICML-2018-LoukasV #approximate #graph
Spectrally Approximating Large Graphs with Smaller Graphs (AL, PV), pp. 3243–3252.
ICMLICML-2018-Mitrovic0ZK #approach #summary
Data Summarization at Scale: A Two-Stage Submodular Approach (MM, EK0, MZ, AK), pp. 3593–3602.
ICMLICML-2018-QiaoZ0WY #image #network #recognition
Gradually Updated Neural Networks for Large-Scale Image Recognition (SQ, ZZ, WS0, BW0, ALY), pp. 4185–4194.
ICMLICML-2018-RuizTDB #category theory #probability
Augment and Reduce: Stochastic Inference for Large Categorical Distributions (FJRR, MKT, ABD, DMB), pp. 4400–4409.
ICMLICML-2018-SaCW #modelling #visual notation
Minibatch Gibbs Sampling on Large Graphical Models (CDS, VC, WW), pp. 1173–1181.
ICMLICML-2018-Schwarz0LGTPH #framework #learning
Progress & Compress: A scalable framework for continual learning (JS, WC0, JL, AGB, YWT, RP, RH), pp. 4535–4544.
ICMLICML-2018-SunP #approximate
Scalable Approximate Bayesian Inference for Particle Tracking Data (RS, LP), pp. 4807–4816.
ICMLICML-2018-WangSQ #learning #modelling #multi #performance #visual notation
A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models (BW, AS, YQ), pp. 5148–5157.
ICMLICML-2018-Wu0H0 #distributed #fault #optimisation
Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization (JW, WH0, JH, TZ0), pp. 5321–5329.
ICMLICML-2018-YenKYHKR #composition #learning #performance
Loss Decomposition for Fast Learning in Large Output Spaces (IEHY, SK, FXY, DNHR, SK, PR), pp. 5626–5635.
ICMLICML-2018-ZhangFS #estimation #matrix
Large-Scale Sparse Inverse Covariance Estimation via Thresholding and Max-Det Matrix Completion (RYZ, SF, SS), pp. 5761–5770.
ICPRICPR-2018-BoubrahimiMAHA #approximate
Scalable kNN Search Approximation for Time Series Data (SFB, RM, BA, SMH, RAA), pp. 970–975.
ICPRICPR-2018-Chen #clustering #similarity
Scalable spectral clustering with cosine similarity (GC), pp. 314–319.
ICPRICPR-2018-FuGA #detection #learning
Simultaneous Context Feature Learning and Hashing for Large Scale Loop Closure Detection (ZF, YG, WA), pp. 1689–1694.
ICPRICPR-2018-GaoMSLWX
Large Margin Structured Convolution Operator for Thermal Infrared Object Tracking (PG0, YM, KS, CL, FW0, LX), pp. 2380–2385.
ICPRICPR-2018-RathoreBKRP #approximate #clustering #heatmap
Approximate Cluster Heat Maps of Large High-Dimensional Data (PR, JCB, DK, SR, MP), pp. 195–200.
ICPRICPR-2018-Yan0R #classification #framework #performance #representation
An Efficient Deep Representation Based Framework for Large-Scale Terrain Classification (YY, AR0, SR), pp. 940–945.
ICPRICPR-2018-ZhangMWZ0 #classification #semantics #video
From Text to Video: Exploiting Mid-Level Semantics for Large-Scale Video Classification (JZ0, KM, XW0, YZ0, JF0), pp. 1695–1700.
ICPRICPR-2018-ZhangZZ
Scalable Monocular SLAM by Fusing and Connecting Line Segments with Inverse Depth Filter (JZ, GZ, HZ), pp. 2283–2288.
ICPRICPR-2018-ZhuX #approximate #graph #learning
Scalable Semi-Supervised Learning by Graph Construction with Approximate Anchors Embedding (HZ, MX), pp. 1331–1336.
ICPRICPR-2018-ZuGBT #performance
Saliency guided fast interpolation for large displacement optical flow (YZ, KG, XB, WT), pp. 1145–1150.
KDDKDD-2018-BachemL0 #clustering #lightweight
Scalable k -Means Clustering via Lightweight Coresets (OB, ML, AK0), pp. 1119–1127.
KDDKDD-2018-BaiOZFRST #n-gram #query
Scalable Query N-Gram Embedding for Improving Matching and Relevance in Sponsored Search (XB0, EO, YZ, AF, AR, RS, AT), pp. 52–61.
KDDKDD-2018-BorisyukGS #detection #image #named #recognition
Rosetta: Large Scale System for Text Detection and Recognition in Images (FB, AG, VS), pp. 71–79.
KDDKDD-2018-ChenCYY #optimisation
Scalable Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data (XC, PC0, LY, SY), pp. 130–138.
KDDKDD-2018-ChenHNHYH #clustering #normalisation
Spectral Clustering of Large-scale Data by Directly Solving Normalized Cut (XC0, WH, FN, DH, MY0, JZH), pp. 1206–1215.
KDDKDD-2018-ConteMSGMV #community #detection #named #network
D2K: Scalable Community Detection in Massive Networks via Small-Diameter k-Plexes (AC, TDM, DDS, RG, AM, LV), pp. 1272–1281.
KDDKDD-2018-FuWHW #approximate #fault #learning #reduction
Scalable Active Learning by Approximated Error Reduction (WF, MW, SH, XW0), pp. 1396–1405.
KDDKDD-2018-GaoWJ #graph #network
Large-Scale Learnable Graph Convolutional Networks (HG, ZW, SJ), pp. 1416–1424.
KDDKDD-2018-GittensRWMGPKRM #data analysis #library #using
Accelerating Large-Scale Data Analysis by Offloading to High-Performance Computing Libraries using Alchemist (AG, KR, SW, MWM, LG, P, JK, MFR, KJM), pp. 293–301.
KDDKDD-2018-LinZXZ #learning #multi #performance
Efficient Large-Scale Fleet Management via Multi-Agent Deep Reinforcement Learning (KL, RZ, ZX, JZ), pp. 1774–1783.
KDDKDD-2018-LiuCMCMJJ #lessons learnt #normalisation #online
Lessons Learned from Developing and Deploying a Large-Scale Employer Name Normalization System for Online Recruitment (QL, JC, TM, AC, CM, FJ, VJ), pp. 556–565.
KDDKDD-2018-Park0 #effectiveness #graph #named #performance
EvoGraph: An Effective and Efficient Graph Upscaling Method for Preserving Graph Properties (HP, MSK0), pp. 2051–2059.
KDDKDD-2018-PerrosPPVYdSS #named
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping (IP, EEP, HP, RWV, XY, Cd, WFS, JS), pp. 2080–2089.
KDDKDD-2018-Rajan
Computational Advertising at Scale (SR), p. 2875.
KDDKDD-2018-SadrediniGBRSW #hardware #novel #rule-based
A Scalable Solution for Rule-Based Part-of-Speech Tagging on Novel Hardware Accelerators (ES, DG, CB, RR, KS, HW), pp. 665–674.
KDDKDD-2018-ShengTWXZN #email #information management #privacy
Anatomy of a Privacy-Safe Large-Scale Information Extraction System Over Email (YS0, ST, JBW, JX0, QZ, MN), pp. 734–743.
KDDKDD-2018-ShenYXEBW0 #graph #mobile
Mobile Access Record Resolution on Large-Scale Identifier-Linkage Graphs (XS, HY, WX, ME, JB, ZW, CW0), pp. 886–894.
KDDKDD-2018-StaarDAB #corpus #documentation #framework #machine learning #platform
Corpus Conversion Service: A Machine Learning Platform to Ingest Documents at Scale (PWJS, MD, CA, CB), pp. 774–782.
KDDKDD-2018-WuCYXXA #clustering #random #using
Scalable Spectral Clustering Using Random Binning Features (LW, PYC, IEHY, FX, YX, CCA), pp. 2506–2515.
KDDKDD-2018-XuLGZLNLBY #approach #learning #on-demand #order #platform
Large-Scale Order Dispatch in On-Demand Ride-Hailing Platforms: A Learning and Planning Approach (ZX, ZL, QG, DZ, QL, JN, CL, WB, JY), pp. 905–913.
ICMTICMT-2018-DanielSC #model transformation #query
Scalable Queries and Model Transformations with the Mogwaï Tool (GD, GS, JC), pp. 175–183.
MoDELSMoDELS-2018-BruneliereKDC #towards
Towards Scalable Model Views on Heterogeneous Model Resources (HB, FMdK, GD, JC), pp. 334–344.
OOPSLAOOPSLA-2018-JeonJO #analysis #data-driven #points-to #precise
Precise and scalable points-to analysis via data-driven context tunneling (MJ, SJ, HO), p. 29.
LOPSTRLOPSTR-2018-PapapanagiotouF #approach #composition #linear #logic #process #using
A Pragmatic, Scalable Approach to Correct-by-Construction Process Composition Using Classical Linear Logic Inference (PP, JDF), pp. 77–93.
ASEASE-2018-Hilton0M #evolution #test coverage
A large-scale study of test coverage evolution (MH, JB0, DM), pp. 53–63.
ASEASE-2018-KonatEV #dependence #incremental
Scalable incremental building with dynamic task dependencies (GK, SE, EV), pp. 76–86.
ASEASE-2018-SungLEW #concurrent #difference #semantics #source code
Datalog-based scalable semantic diffing of concurrent programs (CS, SKL, CE, CW0), pp. 656–666.
ESEC-FSEESEC-FSE-2018-GaoDQGW0HZW #debugging #distributed #empirical
An empirical study on crash recovery bugs in large-scale distributed systems (YG, WD, FQ, CG, DW, JW0, RH, LZ, YW), pp. 539–550.
ESEC-FSEESEC-FSE-2018-GulzarWK #automation #big data #data analysis #data-driven #debugging #named
BigSift: automated debugging of big data analytics in data-intensive scalable computing (MAG, SW, MK), pp. 863–866.
ESEC-FSEESEC-FSE-2018-Ketkar #migration
Type migration in large-scale code bases (AK), pp. 965–967.
ESEC-FSEESEC-FSE-2018-MaddoxLR
Large-scale study of substitutability in the presence of effects (JM, YL, HR), pp. 528–538.
ICSE-2018-FanSCMLXPS #analysis #android #exception
Large-scale analysis of framework-specific exceptions in Android apps (LF, TS, SC, GM, YL0, LX, GP, ZS), pp. 408–419.
ICSE-2018-HammadGM #android #anti #empirical #obfuscation
A large-scale empirical study on the effects of code obfuscations on Android apps and anti-malware products (MH, JG, SM), pp. 421–431.
ICSE-2018-MirandaCVB #performance #similarity #testing
FAST approaches to scalable similarity-based test case prioritization (BM, EC, RV, AB), pp. 222–232.
ICSE-2018-PalombaBPFOL #empirical #maintenance #on the #smell
On the diffuseness and the impact on maintainability of code smells: a large scale empirical investigation (FP, GB, MDP, FF, RO, ADL), p. 482.
ICSE-2018-PapadakisSYB #correlation #detection #empirical #fault
Are mutation scores correlated with real fault detection?: a large scale empirical study on the relationship between mutants and real faults (MP, DS0, SY, DHB), pp. 537–548.
ICSE-2018-WangBWWCWW #empirical #mobile #obfuscation
Software protection on the go: a large-scale empirical study on mobile app obfuscation (PW0, QB, LW, SW0, ZC, TW, DW), pp. 26–36.
ICSE-2018-XiaBLXHL #case study #comprehension
Measuring program comprehension: a large-scale field study with professionals (XX0, LB, DL0, ZX, AEH, SL), p. 584.
ASPLOSASPLOS-2018-BestaHYAMH #energy #network #performance
Slim NoC: A Low-Diameter On-Chip Network Topology for High Energy Efficiency and Scalability (MB, SMH, SY, RA, OM, TH), pp. 43–55.
ASPLOSASPLOS-2018-HsuDMT #named
SmoothOperator: Reducing Power Fragmentation and Improving Power Utilization in Large-scale Datacenters (CHH, QD, JM, LT), pp. 535–548.
ASPLOSASPLOS-2018-ZhaL #configuration management #multi
Liquid Silicon-Monona: A Reconfigurable Memory-Oriented Computing Fabric with Scalable Multi-Context Support (YZ, JL), pp. 214–228.
CASECASE-2018-GrechVCA #overview #visual notation
Collision Avoidance System for the RP Survey and Visual Inspection Train in the CERN Large Hadron Collider (LG, GV, MDC, CVA), pp. 817–822.
CGOCGO-2018-0003LJZW #concurrent #debugging #distributed #graph
Scalable concurrency debugging with distributed graph processing (LZ0, XL, HJ0, JZ, QW), pp. 188–199.
IJCARIJCAR-2018-HernandezK #abstraction #framework #reasoning
An Abstraction-Refinement Framework for Reasoning with Large Theories (JCLH, KK), pp. 663–679.
IJCARIJCAR-2018-HuangMGZZ #satisfiability #testing
Investigating the Existence of Large Sets of Idempotent Quasigroups via Satisfiability Testing (PH0, FM, CG, JZ0, HZ), pp. 354–369.
TAPTAP-2018-BernardHK #approach #approximate #modelling #random
An Approximation-Based Approach for the Random Exploration of Large Models (JB0, PCH, OK), pp. 27–43.
VMCAIVMCAI-2018-BiondiEHLMQ #approximate #data flow #source code
Scalable Approximation of Quantitative Information Flow in Programs (FB, MAE, AH, AL, KSM, JQ), pp. 71–93.
ICSAICSA-2017-MartenssonSB #industrial #integration
Continuous Integration Impediments in Large-Scale Industry Projects (TM, DS, JB), pp. 169–178.
ICSAICSA-2017-MusilESISMB #architecture #integration
Continuous Architectural Knowledge Integration: Making Heterogeneous Architectural Knowledge Available in Large-Scale Organizations (JM, FJE, MS, TBI, DS0, AM, SB), pp. 189–192.
JCDLJCDL-2017-BammanCGHS #library
Estimating the Date of First Publication in a Large-Scale Digital Library (DB, MC, JG, CH, VS), pp. 149–158.
JCDLJCDL-2017-WeiglPOD #library
Information-Seeking in Large-Scale Digital Libraries: Strategies for Scholarly Workset Creation (DMW, KRP, PO, JSD), pp. 253–256.
CSEETCSEET-2017-DemuthK #approach #approximate
An Approach for Project Task Approximation in a Large-Scale Software Project Course (BD, MK), pp. 67–76.
EDMEDM-2017-AndresBSGSC #framework #replication #using
Studying MOOC Completion at Scale Using the MOOC Replication Framework (JMLA, RSB, GS, DG, CAS, SAC).
EDMEDM-2017-ZhangS #interactive #modelling #network
Modeling Network Dynamics of MOOC Discussion Interactions at Scale (JZ, MS).
ICSMEICSME-2017-BlondeauEACCD #case study #developer #testing #what
What are the Testing Habits of Developers? A Case Study in a Large IT Company (VB, AE, NA, SC, PC, SD), pp. 58–68.
ICSMEICSME-2017-HuangVGSS #analysis #assembly #execution #named #visualisation
Atlantis: Improving the Analysis and Visualization of Large Assembly Execution Traces (HNH, EV0, DMG, MADS, MS), pp. 623–627.
ICSMEICSME-2017-VasquezMP #automation #mobile #testing
Continuous, Evolutionary and Large-Scale: A New Perspective for Automated Mobile App Testing (MLV, KM, DP), pp. 399–410.
ICSMEICSME-2017-WiemanALVD #case study #experience #learning
An Experience Report on Applying Passive Learning in a Large-Scale Payment Company (RW, MFA, WL, SV, AvD), pp. 564–573.
ICSMEICSME-2017-XiaLBSL
Personality and Project Success: Insights from a Large-Scale Study with Professionals (XX0, DL0, LB, AS0, SL), pp. 318–328.
MSRMSR-2017-BaoXXLL #developer #industrial #mining
Who will leave the company?: a large-scale industry study of developer turnover by mining monthly work report (LB, ZX, XX0, DL0, SL), pp. 170–181.
MSRMSR-2017-GhotraMH #classification #fault #feature model #modelling
A large-scale study of the impact of feature selection techniques on defect classification models (BG, SM, AEH), pp. 146–157.
MSRMSR-2017-GonzalezSPMN #comprehension #maintenance #testing
A large-scale study on the usage of testing patterns that address maintainability attributes: patterns for ease of modification, diagnoses, and comprehension (DG, JCSS, AP, MM, MN), pp. 391–401.
MSRMSR-2017-WanLXC #debugging #empirical
Bug characteristics in blockchain systems: a large-scale empirical study (ZW, DL0, XX0, LC), pp. 413–424.
MSRMSR-2017-WatanabeAKSTSIS #comprehension #metric #mobile
Understanding the origins of mobile app vulnerabilities: a large-scale measurement study of free and paid apps (TW0, MA, FK, ES, YT, BS, YI, TS, TY, TM), pp. 14–24.
SANERSANER-2017-Kirda #approach #automation #detection #named
UNVEIL: A large-scale, automated approach to detecting ransomware (keynote) (EK), p. 1.
SANERSANER-2017-XavierBHV #api #impact analysis
Historical and impact analysis of API breaking changes: A large-scale study (LX, AB, ACH, MTV), pp. 138–147.
SANERSANER-2017-ZhouLYZ #recommendation
Scalable tag recommendation for software information sites (PZ, JL0, ZY, GZ), pp. 272–282.
SEFMSEFM-2017-FantechiHM #composition #verification
Compositional Verification of Interlocking Systems for Large Stations (AF, AEH, HDM), pp. 236–252.
ICFP-2017-CanouCH #education #functional #ml #programming
Scaling up functional programming education: under the hood of the OCaml MOOC (BC, RDC, GH), p. 25.
AIIDEAIIDE-2017-ClarkF #performance #random #search-based
Fast Random Genetic Search for Large-Scale RTS Combat Scenarios (CC, AF), pp. 165–171.
CoGCIG-2017-BertensGP #big data #game studies #multi #predict
Games and big data: A scalable multi-dimensional churn prediction model (PB, AG, AP), pp. 33–36.
CoGVS-Games-2017-KoskelaPHAAO #3d #modelling #named #web
DRUMM: Dynamic viewing of large-scale 3D city models on the web (TK, MP, AH, TA, PA, TO), pp. 8–14.
CIKMCIKM-2017-ArmanACA #3d #database #named #query
VizQ: A System for Scalable Processing of Visibility Queries in 3D Spatial Databases (AA, MEA, FMC, KA), pp. 2447–2450.
CIKMCIKM-2017-BhamidipatiKM #predict
A Large Scale Prediction Engine for App Install Clicks and Conversions (NB, RK, SM), pp. 167–175.
CIKMCIKM-2017-CaoZL #approach #approximate #distributed #effectiveness #graph #mining #named
PMS: an Effective Approximation Approach for Distributed Large-scale Graph Data Processing and Mining (YC, YZ, JL), pp. 1999–2002.
CIKMCIKM-2017-Chekol #evaluation #probability #query
Scaling Probabilistic Temporal Query Evaluation (MWC), pp. 697–706.
CIKMCIKM-2017-ChenYSGHY #network
Community-Based Network Alignment for Large Attributed Network (ZC0, XY, BS, JG, XH, WSY), pp. 587–596.
CIKMCIKM-2017-HuWBZC #clustering #performance
Fast K-means for Large Scale Clustering (QH, JW, LB0, YZ0, JC0), pp. 2099–2102.
CIKMCIKM-2017-KansalS #database #graph
A Scalable Graph-Coarsening Based Index for Dynamic Graph Databases (AK, FS), pp. 207–216.
CIKMCIKM-2017-LiK #evaluation #information retrieval
Active Sampling for Large-scale Information Retrieval Evaluation (DL, EK), pp. 49–58.
CIKMCIKM-2017-OosterhuisR #evaluation #online
Sensitive and Scalable Online Evaluation with Theoretical Guarantees (HO, MdR), pp. 77–86.
CIKMCIKM-2017-QianPS #learning
Active Learning for Large-Scale Entity Resolution (KQ0, LP0, PS), pp. 1379–1388.
CIKMCIKM-2017-SeoK #algorithm #clustering #graph #named #performance
pm-SCAN: an I/O Efficient Structural Clustering Algorithm for Large-scale Graphs (JHS, MHK), pp. 2295–2298.
CIKMCIKM-2017-TanZW #graph #learning #representation
Representation Learning of Large-Scale Knowledge Graphs via Entity Feature Combinations (ZT, XZ0, WW0), pp. 1777–1786.
CIKMCIKM-2017-WuZCC #approach #image
A New Approach to Compute CNNs for Extremely Large Images (SW, MZ, GC0, KC0), pp. 39–48.
CIKMCIKM-2017-ZhuangLZF #human-computer #hybrid #knowledge base #named
Hike: A Hybrid Human-Machine Method for Entity Alignment in Large-Scale Knowledge Bases (YZ, GL0, ZZ, JF), pp. 1917–1926.
ICMLICML-2017-0001N #composition #learning #modelling
Relative Fisher Information and Natural Gradient for Learning Large Modular Models (KS0, FN), pp. 3289–3298.
ICMLICML-2017-ChenYLZ #online #optimisation #performance
Online Partial Least Square Optimization: Dropping Convexity for Better Efficiency and Scalability (ZC, LFY, CJL, TZ), pp. 777–786.
ICMLICML-2017-Hernandez-Lobato #distributed #parallel
Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space (JMHL, JR, EOPK, AAG), pp. 1470–1479.
ICMLICML-2017-JainMR #generative #learning #modelling #multi
Scalable Generative Models for Multi-label Learning with Missing Labels (VJ, NM, PR), pp. 1636–1644.
ICMLICML-2017-RealMSSSTLK #classification #evolution #image
Large-Scale Evolution of Image Classifiers (ER, SM, AS, SS, YLS, JT, QVL, AK), pp. 2902–2911.
ICMLICML-2017-TangGD #sketching
Gradient Projection Iterative Sketch for Large-Scale Constrained Least-Squares (JT, MG, MED), pp. 3377–3386.
ICMLICML-2017-Villacampa-Calvo #classification #multi #process #using
Scalable Multi-Class Gaussian Process Classification using Expectation Propagation (CVC, DHL), pp. 3550–3559.
ICMLICML-2017-WichrowskaMHCDF
Learned Optimizers that Scale and Generalize (OW, NM, MWH, SGC, MD, NdF, JSD), pp. 3751–3760.
ICMLICML-2017-YangRS
Scalable Bayesian Rule Lists (HY, CR, MS), pp. 3921–3930.
ICMLICML-2017-ZhangHLYCHW #reduction
Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction (WZ, BH, WL0, JY, DC, XH0, JW0), pp. 4016–4025.
KDDKDD-2017-AlbertKG #identification #network #using
Using Convolutional Networks and Satellite Imagery to Identify Patterns in Urban Environments at a Large Scale (AA, JK, MCG), pp. 1357–1366.
KDDKDD-2017-ConteFMPT #performance
Fast Enumeration of Large k-Plexes (AC, DF, CM, MP, RT), pp. 115–124.
KDDKDD-2017-CurtisG #estimation
Estimation of Recent Ancestral Origins of Individuals on a Large Scale (REC, ARG), pp. 1417–1425.
KDDKDD-2017-DongCS #learning #named #network #representation
metapath2vec: Scalable Representation Learning for Heterogeneous Networks (YD, NVC, AS), pp. 135–144.
KDDKDD-2017-GanH #data mining #framework #mining
A Data Mining Framework for Valuing Large Portfolios of Variable Annuities (GG, JXH), pp. 1467–1475.
KDDKDD-2017-IosifidisN #learning #sentiment
Large Scale Sentiment Learning with Limited Labels (VI, EN), pp. 1823–1832.
KDDKDD-2017-KuangPCMP
Pharmacovigilance via Baseline Regularization with Large-Scale Longitudinal Observational Data (ZK, PLP, VSC, RM, DP), pp. 1537–1546.
KDDKDD-2017-PanZLCHHZ #network
An Intelligent Customer Care Assistant System for Large-Scale Cellular Network Diagnosis (LP, JZ, PPCL, HC, CH, CH, KZ), pp. 1951–1959.
KDDKDD-2017-Parekh #design
Designing AI at Scale to Power Everyday Life (RP), p. 27.
KDDKDD-2017-PerrosPWVSTS #named
SPARTan: Scalable PARAFAC2 for Large & Sparse Data (IP, EEP, FW0, RWV, ES, MT, JS), pp. 375–384.
KDDKDD-2017-RaffN #distance #sequence
An Alternative to NCD for Large Sequences, Lempel-Ziv Jaccard Distance (ER, CKN), pp. 1007–1015.
KDDKDD-2017-SalehianHL #approach #crowdsourcing #machine learning
Matching Restaurant Menus to Crowdsourced Food Data: A Scalable Machine Learning Approach (HS, PDH, CL), pp. 2001–2009.
KDDKDD-2017-SpringS #learning #random
Scalable and Sustainable Deep Learning via Randomized Hashing (RS, AS), pp. 445–454.
KDDKDD-2017-TongCZCWYYL #approach #online #platform #predict
The Simpler The Better: A Unified Approach to Predicting Original Taxi Demands based on Large-Scale Online Platforms (YT, YC, ZZ, LC0, JW0, QY0, JY, WL), pp. 1653–1662.
KDDKDD-2017-WuHS #collaboration #ranking
Large-scale Collaborative Ranking in Near-Linear Time (LW, CJH, JS), pp. 515–524.
KDDKDD-2017-YanCR #detection
Scalable Top-n Local Outlier Detection (YY, LC, EAR), pp. 1235–1244.
KDDKDD-2017-YinLN #bound #education
Small Batch or Large Batch?: Gaussian Walk with Rebound Can Teach (PY, PL0, TN), pp. 1275–1284.
ECMFAECMFA-2017-GomezMBCDGKLT #case study #development #experience #modelling #on the
On the Opportunities of Scalable Modeling Technologies: An Experience Report on Wind Turbines Control Applications Development (AG, XM, GB, JC, CD, AG, DSK, JdL, ST), pp. 300–315.
ECOOPECOOP-2017-Schulte #challenge
Challenges to Achieving High Availability at Scale (Invited Talk) (WS), p. 1.
PPDPPPDP-2017-MeiklejohnEYBRB #case study #evaluation #experience #programming
Practical evaluation of the Lasp programming model at large scale: an experience report (CSM, VE, JY, CB, PVR, AB), pp. 109–114.
SASSAS-2017-MarechalMP #linear #parametricity #programming
Scalable Minimizing-Operators on Polyhedra via Parametric Linear Programming (AM, DM, MP), pp. 212–231.
ASEASE-2017-CelikPG #named #proving #verification
iCoq: regression proof selection for large-scale verification projects (, KP, MG), pp. 171–182.
ASEASE-2017-DanielJSC #framework #model transformation #named
Gremlin-ATL: a scalable model transformation framework (GD, FJ, GS, JC), pp. 462–472.
ASEASE-2017-ZhaoSZFV #development #empirical #integration
The impact of continuous integration on other software development practices: a large-scale empirical study (YZ, AS, YZ, VF, BV), pp. 60–71.
ESEC-FSEESEC-FSE-2017-ZhouCMW #kernel #linux #maintenance #on the
On the scalability of Linux kernel maintainers' work (MZ, QC, AM, FW), pp. 27–37.
ICSE-2017-FabijanDOB #data-driven #development #evolution
The evolution of continuous experimentation in software product development: from data to a data-driven organization at scale (AF, PAD, HHO, JB), pp. 770–780.
ICSE-2017-LiWWWWLXH #android #detection #library #named #precise
LibD: scalable and precise third-party library detection in android markets (ML, WW, PW0, SW0, DW, JL, RX, WH), pp. 335–346.
ICSE-2017-TsutanoBSRD #android #approach #performance #robust
An efficient, robust, and scalable approach for analyzing interacting android apps (YT, SB, WSa, GR, JD), pp. 324–334.
ASPLOSASPLOS-2017-GaoPYHK #3d #memory management #named #network #performance
TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory (MG, JP, XY, MH, CK), pp. 751–764.
ASPLOSASPLOS-2017-HsiaoNKPP #named
AsyncClock: Scalable Inference of Asynchronous Event Causality (CHH, SN, EMIK, CLP, GAP), pp. 193–205.
ASPLOSASPLOS-2017-NguyenP #memory management #source code #transaction #what
What Scalable Programs Need from Transactional Memory (DN, KP), pp. 105–118.
ASPLOSASPLOS-2017-RajbhandariHRCC #multi #optimisation #performance
Optimizing CNNs on Multicores for Scalability, Performance and Goodput (SR, YH, OR, MC, TMC), pp. 267–280.
ASPLOSASPLOS-2017-WangHZXS #analysis #graph #interprocedural #named
Graspan: A Single-machine Disk-based Graph System for Interprocedural Static Analyses of Large-scale Systems Code (KW0, AH0, ZZ0, G(X, AAS), pp. 389–404.
CASECASE-2017-CarliD17a #distributed #energy #programming #using
A decentralized control strategy for energy retrofit planning of large-scale street lighting systems using dynamic programming (RC, MD), pp. 1196–1200.
CASECASE-2017-ChoiPR #algorithm #automation #multi #synthesis
Automated synthesis of scalable algorithms for inferring non-local properties to assist in multi-robot teaming (TC, TPP, AWR), pp. 1522–1527.
CASECASE-2017-VijayaraghavanK #algorithm
An L1-minimization based algorithm to measure the redundancy of state estimators in large sensor systems (VV, KK, YD, HP), pp. 424–428.
CGOCGO-2017-JohnsonAL #incremental #named
ThinLTO: scalable and incremental LTO (TJ, MA, DXL), pp. 111–121.
CGOCGO-2017-OttoniM #optimisation
Optimizing function placement for large-scale data-center applications (GO, BM), pp. 233–244.
CADECADE-2017-0001SUP #consistency #detection #first-order #knowledge base #nondeterminism
Detecting Inconsistencies in Large First-Order Knowledge Bases (SS0, GS, JU, AP), pp. 310–325.
CADECADE-2017-BarbosaBF #fine-grained #proving
Scalable Fine-Grained Proofs for Formula Processing (HB, JCB, PF), pp. 398–412.
CAVCAV-2017-BakD #linear #reachability
Simulation-Equivalent Reachability of Large Linear Systems with Inputs (SB, PSD), pp. 401–420.
CAVCAV-2017-ReynoldsWBBLT #string #using
Scaling Up DPLL(T) String Solvers Using Context-Dependent Simplification (AR, MW, CWB, DB, TL, CT), pp. 453–474.
WICSAWICSA-2016-GarbaNB #multi #named #variability
MUSA: A Scalable Multi-touch and Multi-perspective Variability Management Tool (MG, AN, RB), pp. 299–302.
WICSAWICSA-2016-MartiniB #agile #architecture #case study #framework #multi
A Multiple Case Study of Continuous Architecting in Large Agile Companies: Current Gaps and the CAFFEA Framework (AM, JB), pp. 1–10.
JCDLJCDL-2016-TraubSOHVH #assessment #bias #corpus
Querylog-based Assessment of Retrievability Bias in a Large Newspaper Corpus (MCT, TS, JvO, JH, APdV, LH), pp. 7–16.
CSEETCSEET-2016-MeierKP #agile #case study #collaboration #development #education #experience #student
Experience Report of Teaching Agile Collaboration and Values: Agile Software Development in Large Student Teams (AM0, MK, GP), pp. 76–80.
EDMEDM-2016-FeildLZRE #automation #feedback #framework #learning #platform
A Scalable Learning Analytics Platform for Automated Writing Feedback (JLF, NL, NLZ, MR, AE), pp. 688–693.
EDMEDM-2016-LuH #question
Seeking Programming-related Information from Large Scaled Discussion Forums, Help or Harm? (YL, SIHH), pp. 442–447.
EDMEDM-2016-Nixon
Massively Scalable EDM with Spark (TN), p. 615.
EDMEDM-2016-Penteado #assessment #data mining #estimation #mining #semantics #using
Estimation of prerequisite skills model from large scale assessment data using semantic data mining (BEP), pp. 675–677.
ICPCICPC-2016-Kulkarni #reuse #source code
Comprehending source code of large software system for reuse (AK), pp. 1–4.
ICSMEICSME-2016-SainiSL #empirical #java #metric #quality
Comparing Quality Metrics for Cloned and Non Cloned Java Methods: A Large Scale Empirical Study (VS, HS, CVL), pp. 256–266.
ICSMEICSME-2016-VassalloZRBPPZ #delivery
Continuous Delivery Practices in a Large Financial Organization (CV, FZ, DR, MB, AP, MDP, AZ), pp. 519–528.
ICSMEICSME-2016-XiaBLL #automation #case study #debugging #fault #harmful #locality #user study #using
“Automated Debugging Considered Harmful” Considered Harmful: A User Study Revisiting the Usefulness of Spectra-Based Fault Localization Techniques with Professionals Using Real Bugs from Large Systems (XX0, LB, DL0, SL), pp. 267–278.
MSRMSR-2016-BavotaR #empirical #self #technical debt
A large-scale empirical study on self-admitted technical debt (GB, BR), pp. 315–326.
MSRMSR-2016-NguyenNN #open source
A large-scale study on repetitiveness, containment, and composability of routines in open-source projects (ATN0, HAN, TNN), pp. 362–373.
SANERSANER-2016-BellerBMZ #evaluation #open source #static analysis
Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source Software (MB, RB, SM, AZ), pp. 470–481.
SANERSANER-2016-BritoHVR #analysis #api #developer #java
Do Developers Deprecate APIs with Replacement Messages? A Large-Scale Analysis on Java Systems (GB, ACH, MTV, RR), pp. 360–369.
SANERSANER-2016-KochharWL #case study #multi #programming language #quality
A Large Scale Study of Multiple Programming Languages and Code Quality (PSK, DW, DL0), pp. 563–573.
SANERSANER-2016-RoyHAWD #automation #metadata #set #spreadsheet
Evaluating Automatic Spreadsheet Metadata Extraction on a Large Set of Responses from MOOC Participants (SR, FH, EA, JW, AvD), pp. 135–145.
SANERSANER-2016-SwidanHK #case study #performance #spreadsheet
Improving the Performance of a Large Scale Spreadsheet: A Case Study (AS, FH, RK), pp. 673–677.
HaskellHaskell-2016-MokhovMJM #harmful #recursion
Non-recursive make considered harmful: build systems at scale (AM, NM, SPJ, SM), pp. 170–181.
ICFP-2016-Abadi #learning #named
TensorFlow: learning functions at scale (MA), p. 1.
CoGCIG-2016-Nelson #corpus #game studies
Investigating vanilla MCTS scaling on the GVG-AI game corpus (MJN), pp. 1–7.
CIKMCIKM-2016-BandyopadhyayFC #graph #incremental #sketching
Topological Graph Sketching for Incremental and Scalable Analytics (BB, DF, AC, SP0), pp. 1231–1240.
CIKMCIKM-2016-BleifussBFRW0PN #approximate #dataset #dependence #functional
Approximate Discovery of Functional Dependencies for Large Datasets (TB, SB, JF, JR, GW, SK0, TP, FN), pp. 1803–1812.
CIKMCIKM-2016-ChenNLXA #feedback #modelling #recommendation
Separating-Plane Factorization Models: Scalable Recommendation from One-Class Implicit Feedback (HC, DN, KL, YX, MA), pp. 669–678.
CIKMCIKM-2016-CheungL #learning #rank #robust
Scalable Spectral k-Support Norm Regularization for Robust Low Rank Subspace Learning (YmC, JL), pp. 1151–1160.
CIKMCIKM-2016-CormackG #classification #learning #reliability
Scalability of Continuous Active Learning for Reliable High-Recall Text Classification (GVC, MRG), pp. 1039–1048.
CIKMCIKM-2016-EtemadiLT #estimation #graph #performance
Efficient Estimation of Triangles in Very Large Graphs (RE, JL, YHT), pp. 1251–1260.
CIKMCIKM-2016-GuoS #analysis #behaviour #mobile #towards
Large-Scale Analysis of Viewing Behavior: Towards Measuring Satisfaction with Mobile Proactive Systems (QG, YS), pp. 579–588.
CIKMCIKM-2016-HoLSKDWZS #algorithm #behaviour #distributed #graph
A Distributed Graph Algorithm for Discovering Unique Behavioral Groups from Large-Scale Telco Data (QH, WL, ES, SK, TAD, JW, ICZ, ASN), pp. 1353–1362.
CIKMCIKM-2016-HuWCLF #graph #query
Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs (JH, XW, RC, SL, YF), pp. 1241–1250.
CIKMCIKM-2016-Jin #e-commerce #online #robust
Large-scale Robust Online Matching and Its Application in E-commerce (RJ), p. 1351.
CIKMCIKM-2016-LiuLLC #composition #named #personalisation #random #rank
PowerWalk: Scalable Personalized PageRank via Random Walks with Vertex-Centric Decomposition (QL, ZL, JCSL, JC), pp. 195–204.
CIKMCIKM-2016-LiuLNFTAKVPWMDV #detection #realtime #twitter #verification
Reuters Tracer: A Large Scale System of Detecting & Verifying Real-Time News Events from Twitter (XL, QL, AN, RF, MT, KA, RK, MV, SP, RW, RM, JD, AV, WK, SS), pp. 207–216.
CIKMCIKM-2016-OrdentlichYFCGD #distributed #word
Network-Efficient Distributed Word2vec Training System for Large Vocabularies (EO, LY, AF, PC, MG, ND, VR, GO), pp. 1139–1148.
CIKMCIKM-2016-PengKYC #matrix #named #rank
RAP: Scalable RPCA for Low-rank Matrix Recovery (CP, ZK, MY, QC), pp. 2113–2118.
CIKMCIKM-2016-PhamP #performance
Scalability and Total Recall with Fast CoveringLSH (NP, RP), pp. 1109–1118.
CIKMCIKM-2016-RossiZ #multi #network
Leveraging Multiple GPUs and CPUs for Graphlet Counting in Large Networks (RAR, RZ0), pp. 1783–1792.
CIKMCIKM-2016-SiddiquiRPH #corpus #documentation #named
FacetGist: Collective Extraction of Document Facets in Large Technical Corpora (TS, XR, AGP, JH0), pp. 871–880.
CIKMCIKM-2016-ZhangLDCKS #big data #locality #privacy #using
Scalable Local-Recoding Anonymization using Locality Sensitive Hashing for Big Data Privacy Preservation (XZ, CL, WD, JC, KR, ZS), pp. 1793–1802.
CIKMCIKM-2016-ZhongSLR #parametricity
Scaling Factorization Machines with Parameter Server (EZ, YS, NL, SR), pp. 1583–1592.
ECIRECIR-2016-BaluFA #matrix #sketching
Sketching Techniques for Very Large Matrix Factorization (RB, TF, LA), pp. 782–788.
ECIRECIR-2016-CroceB #kernel #learning
Large-Scale Kernel-Based Language Learning Through the Ensemble Nystr đdoto o ¨ m Methods (DC, RB0), pp. 100–112.
ICMLICML-2016-CanevetJF #empirical
Importance Sampling Tree for Large-scale Empirical Expectation (OC, CJ, FF), pp. 1454–1462.
ICMLICML-2016-ChenG #multi #problem
Scalable Discrete Sampling as a Multi-Armed Bandit Problem (YC, ZG), pp. 2492–2501.
ICMLICML-2016-GeJKNS #algorithm #analysis #canonical #correlation #performance
Efficient Algorithms for Large-scale Generalized Eigenvector Computation and Canonical Correlation Analysis (RG0, CJ, SMK, PN, AS), pp. 2741–2750.
ICMLICML-2016-LucicBZK
Horizontally Scalable Submodular Maximization (ML, OB, MZ, AK0), pp. 2981–2989.
ICMLICML-2016-LuketinaRBG
Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters (JL, TR, MB, KG), pp. 2952–2960.
ICMLICML-2016-TaylorBXSPG #approach #network
Training Neural Networks Without Gradients: A Scalable ADMM Approach (GT, RB, ZX0, BS, ABP, TG), pp. 2722–2731.
ICMLICML-2016-UbaruS #matrix #performance #rank
Fast methods for estimating the Numerical rank of large matrices (SU, YS), pp. 468–477.
ICMLICML-2016-VladymyrovC #problem
The Variational Nystrom method for large-scale spectral problems (MV, MÁCP), pp. 211–220.
ICMLICML-2016-ZhangLL #classification #image #network
Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification (YZ, KL, HL), pp. 612–621.
ICPRICPR-2016-ChaiLYLC #gesture #network #recognition
Two streams Recurrent Neural Networks for Large-Scale Continuous Gesture Recognition (XC, ZL, FY, ZL, XC), pp. 31–36.
ICPRICPR-2016-ConlyDA #gesture #recognition
Leveraging intra-class variations to improve large vocabulary gesture recognition (CC, AD, VA), pp. 907–912.
ICPRICPR-2016-GunjiNTKK #3d #recognition
3D object recognition from large-scale point clouds with global descriptor and sliding window (NG, HN, KT, TK, TK), pp. 721–726.
ICPRICPR-2016-KanehiraSH #learning #multi
True-negative label selection for large-scale multi-label learning (AK, AS, TH), pp. 3673–3678.
ICPRICPR-2016-KimuraKSK #classification #multi #performance #random
Fast random k-labELsets for large-scale multi-label classification (KK, MK, LS, SK), pp. 438–443.
ICPRICPR-2016-LiMTFXLS #3d #data-driven #database #gesture #recognition
Large-scale gesture recognition with a fusion of RGB-D data based on the C3D model (YL, QM, KT, YF, XX, RL, JS), pp. 25–30.
ICPRICPR-2016-Liu #hybrid #mining
Exposing seam carving forgery under recompression attacks by hybrid large feature mining (QL), pp. 1041–1046.
ICPRICPR-2016-Liu16a #classification #learning #multi #network
Hierarchical learning for large multi-class network classification (LL), pp. 2307–2312.
ICPRICPR-2016-WangLLGTO #gesture #network #recognition #using
Large-scale Isolated Gesture Recognition using Convolutional Neural Networks (PW, WL, SL, ZG, CT, PO), pp. 7–12.
ICPRICPR-2016-WangLLZGO #gesture #network #recognition #using
Large-scale Continuous Gesture Recognition Using Convolutional Neural Networks (PW, WL, SL, YZ, ZG, PO), pp. 13–18.
ICPRICPR-2016-ZhuangYH #approach #modelling #retrieval #video
DLSTM approach to video modeling with hashing for large-scale video retrieval (NZ, JY0, KAH), pp. 3222–3227.
ICPRICPR-2016-ZhuZMSSS #3d #gesture #network #recognition #using
Large-scale Isolated Gesture Recognition using pyramidal 3D convolutional networks (GZ, LZ0, LM, JS, JS, PS), pp. 19–24.
KDDKDD-2016-0002GOL #modelling #predict
Business Applications of Predictive Modeling at Scale (QZ0, SG, PO, YL), pp. 2139–2140.
KDDKDD-2016-AgostaGHIKZ #clustering #data analysis #using
Scalable Data Analytics Using R: Single Machines to Hadoop Spark Clusters (JMA, DG, RH, MI, SK, MZ), p. 2115.
KDDKDD-2016-AkibaY #graph #sketching
Compact and Scalable Graph Neighborhood Sketching (TA, YY), pp. 685–694.
KDDKDD-2016-BanerjeeYR #approach #mining #named
MANTRA: A Scalable Approach to Mining Temporally Anomalous Sub-trajectories (PB, PY, SR), pp. 1415–1424.
KDDKDD-2016-ChenG #named
XGBoost: A Scalable Tree Boosting System (TC, CG), pp. 785–794.
KDDKDD-2016-ChiangLL #classification #coordination #linear #manycore #parallel
Parallel Dual Coordinate Descent Method for Large-scale Linear Classification in Multi-core Environments (WLC, MCL, CJL), pp. 1485–1494.
KDDKDD-2016-DuLZHX #detection
Catch Me If You Can: Detecting Pickpocket Suspects from Large-Scale Transit Records (BD, CL, WZ, ZH, HX), pp. 87–96.
KDDKDD-2016-GroverL #learning #named #network
node2vec: Scalable Feature Learning for Networks (AG, JL), pp. 855–864.
KDDKDD-2016-HanZZ #component #estimation #performance
Fast Component Pursuit for Large-Scale Inverse Covariance Estimation (LH0, YZ0, TZ0), pp. 1585–1594.
KDDKDD-2016-HaPK #categorisation #e-commerce #multi #network #using
Large-Scale Item Categorization in e-Commerce Using Multiple Recurrent Neural Networks (JH, HP, JK), pp. 107–115.
KDDKDD-2016-Herbrich #learning #modelling
Learning Sparse Models at Scale (RH), p. 407.
KDDKDD-2016-HuangZCSML #network
Meta Structure: Computing Relevance in Large Heterogeneous Information Networks (ZH0, YZ, RC, YS, NM, XL), pp. 1595–1604.
KDDKDD-2016-LiMLFDYLQ #big data #data analysis #learning #performance #taxonomy
Scalable Fast Rank-1 Dictionary Learning for fMRI Big Data Analysis (XL0, MM, BL, MSF, ID, JY, TL, SQ), pp. 511–519.
KDDKDD-2016-LynchAA #image #learning #multimodal #rank #semantics #visual notation
Images Don't Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank (CL, KA, JA), pp. 541–548.
KDDKDD-2016-MaccioniA #graph #pattern matching
Scalable Pattern Matching over Compressed Graphs via Dedensification (AM, DJA), pp. 1755–1764.
KDDKDD-2016-MahmoodyTU
Scalable Betweenness Centrality Maximization via Sampling (AM, CET, EU), pp. 1765–1773.
KDDKDD-2016-MaiAS #algorithm #clustering #dataset #named #performance
AnyDBC: An Efficient Anytime Density-based Clustering Algorithm for Very Large Complex Datasets (STM, IA, MS), pp. 1025–1034.
KDDKDD-2016-PetitjeanW #learning #modelling #visual notation
Scalable Learning of Graphical Models (FP, GIW), pp. 2131–2132.
KDDKDD-2016-RendleFSS #in the cloud #machine learning #robust
Robust Large-Scale Machine Learning in the Cloud (SR, DF, EJS, BYS), pp. 1125–1134.
KDDKDD-2016-Shi0CTGR #multi #network #social
Dynamics of Large Multi-View Social Networks: Synergy, Cannibalization and Cross-View Interplay (YS, MK0, SC, MT, SG, RR), pp. 1855–1864.
KDDKDD-2016-Srivastava #machine learning #theory and practice
Large-Scale Machine Learning at Verizon: Theory and Applications (AS), p. 417.
KDDKDD-2016-TabeiSYP #matrix
Scalable Partial Least Squares Regression on Grammar-Compressed Data Matrices (YT, HS, YY, SJP), pp. 1875–1884.
KDDKDD-2016-TanFLWLLPXH #adaptation #algorithm #predict
Scalable Time-Decaying Adaptive Prediction Algorithm (YT, ZF, GL, FW, ZL, SL, QP, EPX, QH), pp. 617–626.
KDDKDD-2016-Yang0Z #probability
Distributing the Stochastic Gradient Sampler for Large-Scale LDA (YY, JC0, JZ0), pp. 1975–1984.
KDDKDD-2016-ZhangZMCZA #linear #modelling #named #predict
GLMix: Generalized Linear Mixed Models For Large-Scale Response Prediction (XZ, YZ, YM, BCC, LZ, DA), pp. 363–372.
OOPSLAOOPSLA-2016-WeitzWTEKT #protocol #smt #verification
Scalable verification of border gateway protocol configurations with an SMT solver (KW, DW, ET, MDE, AK, ZT), pp. 765–780.
LOPSTRLOPSTR-2016-JanaKDVC #array #bound #model checking #source code
Scaling Bounded Model Checking by Transforming Programs with Arrays (AJ, UPK, AD, RV, NC), pp. 275–292.
POPLPOPL-2016-PlotkinBLRV #network #symmetry #using #verification
Scaling network verification using symmetry and surgery (GDP, NB, NPL, AR, GV), pp. 69–83.
ASEASE-2016-Babur #analysis #modelling #set #statistics
Statistical analysis of large sets of models (ÖB), pp. 888–891.
FSEFSE-2016-LuoMP #comparison #empirical #testing
A large-scale empirical comparison of static and dynamic test case prioritization techniques (QL, KM, DP), pp. 559–570.
ICSE-2016-BersaniBGKP #performance #pipes and filters #using
Efficient large-scale trace checking using mapreduce (MMB, DB, CG, SK, PSP), pp. 888–898.
ICSE-2016-Huang #analysis #concurrent #thread
Scalable thread sharing analysis (JH0), pp. 1097–1108.
ICSE-2016-LuLLXMH0F #android #mining #named
PRADA: prioritizing android devices for apps by mining large-scale usage data (XL, XL, HL, TX0, QM, DH, GH0, FF0), pp. 3–13.
ICSE-2016-MechtaevYR #analysis #multi #named #synthesis
Angelix: scalable multiline program patch synthesis via symbolic analysis (SM, JY, AR), pp. 691–701.
ICSE-2016-SajnaniSSRL #clone detection #detection #named
SourcererCC: scaling code clone detection to big-code (HS, VS, JS, CKR, CVL), pp. 1157–1168.
GPCEGPCE-2016-Rothberg00L #testing #towards
Towards scalable configuration testing in variable software (VR, CD, AZ, DL), pp. 156–167.
ASPLOSASPLOS-2016-LinCLMHXS #design #implementation #kernel
Scalable Kernel TCP Design and Implementation for Short-Lived Connections (XL, YC0, XL, JM, JH, WX, YS), pp. 339–352.
ASPLOSASPLOS-2016-PhothilimthanaT
Scaling up Superoptimization (PMP, AT0, RB, DD), pp. 297–310.
CASECASE-2016-HuYLD #automation #identification #petri net
Critical stages and their identification in large scale automated manufacturing systems via Petri nets (HH, YY, YL0, ND), pp. 413–420.
CASECASE-2016-JanSFF #automation #performance
Fast automatic seat assignment for large-scale passengers reservation systems (GEJ, CCS, CTFT, KF), pp. 239–244.
CASECASE-2016-SchwesingerS #3d #approach #locality
A 3D approach to infrastructure-free localization in large scale warehouse environments (DS, JRS), pp. 274–279.
CCCC-2016-ScholzJSW #datalog #on the #performance #program analysis
On fast large-scale program analysis in Datalog (BS, HJ, PS, TW), pp. 196–206.
FASEFASE-2016-CarlosST #query #repository #traversal
Two-Step Transformation of Model Traversal EOL Queries for Large CDO Repositories (XDC, GS, ST), pp. 141–157.
CAVCAV-2016-GarioCMTR #automation #design #model checking
Model Checking at Scale: Automated Air Traffic Control Design Space Exploration (MG, AC, CM, ST, KYR), pp. 3–22.
ICSTICST-2016-StivaletF #generative #php #testing
Large Scale Generation of Complex and Faulty PHP Test Cases (BS, EF), pp. 409–415.
VMCAIVMCAI-2016-KidoCH #abstract interpretation #standard #static analysis #towards
Abstract Interpretation with Infinitesimals - Towards Scalability in Nonstandard Static Analysis (KK, SC, IH), pp. 229–249.
QoSAQoSA-2015-LehrigEB #in the cloud #metric #overview #performance
Scalability, Elasticity, and Efficiency in Cloud Computing: a Systematic Literature Review of Definitions and Metrics (SL, HE, SB), pp. 83–92.
WICSAWICSA-2015-GortonKN #architecture #database
Architecture Knowledge for Evaluating Scalable Databases (IG, JK, AN), pp. 95–104.
WICSAWICSA-2015-NaabBLHEMCK #architecture #case study #design #ecosystem #experience #mobile #prototype #why
Why Data Needs more Attention in Architecture Design — Experiences from Prototyping a Large-Scale Mobile App Ecosystem (MN, SB, TL, SH, AE, DM, RC, FK), pp. 75–84.
JCDLJCDL-2015-HinzeTBMD #ambiguity #library #semantics
Improving Access to Large-scale Digital Libraries ThroughSemantic-enhanced Search and Disambiguation (AH, CTS, DB0, RM, JSD), pp. 147–156.
PODSPODS-2015-Cormode #dataset #summary
Compact Summaries over Large Datasets (GC), pp. 157–158.
SIGMODSIGMOD-2015-BeedkarG #mining #named #sequence
LASH: Large-Scale Sequence Mining with Hierarchies (KB, RG), pp. 491–503.
SIGMODSIGMOD-2015-ChristensenWLYT #named #online #reasoning
STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data (RC, LW, FL, KY, JT, NV), pp. 1111–1116.
SIGMODSIGMOD-2015-ElgamalYAMH #analysis #big data #component #distributed #named #platform
sPCA: Scalable Principal Component Analysis for Big Data on Distributed Platforms (TE, MY, AA, WM, MH), pp. 79–91.
SIGMODSIGMOD-2015-GurukarRR #approach #commit #communication #mining #named #network
COMMIT: A Scalable Approach to Mining Communication Motifs from Dynamic Networks (SG, SR, BR), pp. 475–489.
SIGMODSIGMOD-2015-HuangBTRTR #machine learning
Resource Elasticity for Large-Scale Machine Learning (BH, MB, YT, BR, ST, FRR), pp. 137–152.
SIGMODSIGMOD-2015-JiangFW #keyword #network
Exact Top-k Nearest Keyword Search in Large Networks (MJ, AWCF, RCWW), pp. 393–404.
SIGMODSIGMOD-2015-KulkarniBFKKMPR #twitter
Twitter Heron: Stream Processing at Scale (SK, NB, MF, VK, CK, SM, JMP, KR, ST), pp. 239–250.
SIGMODSIGMOD-2015-LinOWY #distributed
Scalable Distributed Stream Join Processing (QL, BCO, ZW, CY), pp. 811–825.
SIGMODSIGMOD-2015-LoesingPEK #database #design #distributed #on the
On the Design and Scalability of Distributed Shared-Data Databases (SL, MP, TE, DK), pp. 663–676.
SIGMODSIGMOD-2015-NothaftMDZLYKAH #data-driven #using
Rethinking Data-Intensive Science Using Scalable Analytics Systems (FAN, MM, TD, ZZ, UL, CY, JK, AA, JH, ML, MJF, ADJ, DAP), pp. 631–646.
SIGMODSIGMOD-2015-PrasadFGMLXHR #data transfer #distributed #performance #predict
Large-scale Predictive Analytics in Vertica: Fast Data Transfer, Distributed Model Creation, and In-database Prediction (SP, AF, VG, JM, JL, VX, MH, IR), pp. 1657–1668.
SIGMODSIGMOD-2015-ShinJSK #approach #graph #named #random
BEAR: Block Elimination Approach for Random Walk with Restart on Large Graphs (KS, JJ, LS, UK), pp. 1571–1585.
SIGMODSIGMOD-2015-TauheedHA #named
THERMAL-JOIN: A Scalable Spatial Join for Dynamic Workloads (FT, TH, AA), pp. 939–950.
SIGMODSIGMOD-2015-TeflioudiGM #matrix #named #performance #retrieval
LEMP: Fast Retrieval of Large Entries in a Matrix Product (CT, RG, OM), pp. 107–122.
SIGMODSIGMOD-2015-YuanWYC #big data #database
A Demonstration of Rubato DB: A Highly Scalable NewSQL Database System for OLTP and Big Data Applications (LYY, LW, JHY, YC), pp. 907–912.
VLDBVLDB-2015-AnciauxLPP
A Scalable Search Engine for Mass Storage Smart Objects (NA, SL, ISP, PP), pp. 910–921.
VLDBVLDB-2015-ArmbrustDDGORSW #performance #usability
Scaling Spark in the Real World: Performance and Usability (MA, TD, AD, AG, AO, JR, IS, PW, RX, MZ), pp. 1840–1851.
VLDBVLDB-2015-BuxBLHDL #execution #named #workflow
SAASFEE: Scalable Scientific Workflow Execution Engine (MB, JB, CL, KH, JD, UL), pp. 1892–1903.
VLDBVLDB-2015-ChuWLHP #clustering #detection #named
ALID: Scalable Dominant Cluster Detection (LC, SW, SL, QH, JP), pp. 826–837.
VLDBVLDB-2015-DingWDFZZ #clustering #named #performance
YADING: Fast Clustering of Large-Scale Time Series Data (RD, QW, YD, QF, HZ, DZ), pp. 473–484.
VLDBVLDB-2015-GoelPABMFGMBL #architecture #realtime #towards
Towards Scalable Real-time Analytics: An Architecture for Scale-out of OLxP Workloads (AKG, JP, NA, PB, SM, FF, FG, CM, TB, WL), pp. 1716–1727.
VLDBVLDB-2015-HaasKWF0 #framework #named
Wisteria: Nurturing Scalable Data Cleaning Infrastructure (DH, SK, JW, MJF, EW), pp. 2004–2015.
VLDBVLDB-2015-KalininCZ #multi #named
Searchlight: Enabling Integrated Search and Exploration over Large Multidimensional Data (AK, , SBZ), pp. 1094–1105.
VLDBVLDB-2015-KatsarouNT #performance #query
Performance and Scalability of Indexed Subgraph Query Processing Methods (FK, NN, PT), pp. 1566–1577.
VLDBVLDB-2015-KoutraJNF #graph #interactive #mining #named #visualisation
Perseus: An Interactive Large-Scale Graph Mining and Visualization Tool (DK, DJ, YN, CF), pp. 1924–1935.
VLDBVLDB-2015-LaiQLC #pipes and filters
Scalable Subgraph Enumeration in MapReduce (LL, LQ, XL, LC), pp. 974–985.
VLDBVLDB-2015-LiDS #constraints #latency
Supporting Scalable Analytics with Latency Constraints (BL, YD, PJS), pp. 1166–1177.
VLDBVLDB-2015-LiQYM #community #network
Influential Community Search in Large Networks (RHL, LQ, JXY, RM), pp. 509–520.
VLDBVLDB-2015-MargoS #distributed #graph
A Scalable Distributed Graph Partitioner (DWM, MIS), pp. 1478–1489.
VLDBVLDB-2015-PelkonenFCHMTV #database #in memory #named #performance
Gorilla: A Fast, Scalable, In-Memory Time Series Database (TP, SF, PC, QH, JM, JT, KV), pp. 1816–1827.
VLDBVLDB-2015-PsaroudakisSMSA #adaptation #concurrent #in memory #towards
Scaling Up Concurrent Main-Memory Column-Store Scans: Towards Adaptive NUMA-aware Data and Task Placement (IP, TS, NM, AS, AA), pp. 1442–1453.
VLDBVLDB-2015-QiuBDSS #named #specification #web
DEXTER: Large-Scale Discovery and Extraction of Product Specifications on the Web (DQ, LB, XLD, YS, DS), pp. 2194–2205.
VLDBVLDB-2015-RenW #graph #morphism
Exploiting Vertex Relationships in Speeding up Subgraph Isomorphism over Large Graphs (XR, JW), pp. 617–628.
VLDBVLDB-2015-SahliMK #named #string
StarDB: A Large-Scale DBMS for Strings (MS, EM, PK), pp. 1844–1855.
VLDBVLDB-2015-ShaoC0LX #framework #graph #performance #similarity
An Efficient Similarity Search Framework for SimRank over Large Dynamic Graphs (YS, BC, LC, ML, XX), pp. 838–849.
VLDBVLDB-2015-ShiokawaFO #algorithm #clustering #graph #performance
SCAN++: Efficient Algorithm for Finding Clusters, Hubs and Outliers on Large-scale Graphs (HS, YF, MO), pp. 1178–1189.
VLDBVLDB-2015-ShiQMJWRO #data analysis #pipes and filters
Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics (JS, YQ, UFM, LJ, CW, BR, ), pp. 2110–2121.
VLDBVLDB-2015-TangCM #similarity
Scaling Similarity Joins over Tree-Structured Data (YT, YC, NM), pp. 1130–1141.
VLDBVLDB-2015-YuM #network #performance
Efficient Partial-Pairs SimRank Search for Large Networks (WY, JAM), pp. 569–580.
CSEETCSEET-2015-Robinson #distributed #industrial
Insights from Creating and Deploying a Large, Globally Distributed Industrial Training Program (BPR), p. 2.
EDMEDM-2015-BakerCMSS #future of
The Future of Practical Applications of EDM at Scale (RSB, JC, PM, BS, JCS), p. 11.
EDMEDM-2015-LewkowZRE #education #framework #learning #platform #streaming #towards
Learning Analytics Platform. Towards an Open Scalable Streaming Solution for Education (NL, NLZ, MR, AE), pp. 460–463.
EDMEDM-2015-RollestonHS #education
Educational Reports That Scale Across Users and Data (RR, RH, MAS), pp. 468–471.
EDMEDM-2015-SaarelaK #approach #clustering #education
Do Country Stereotypes Exist in Educational Data? A Clustering Approach for Large, Sparse, and Weighted Data (MS, TK), pp. 156–153.
EDMEDM-2015-ViePGBB #adaptation #modelling #performance #predict #testing
Predicting Performance on Dichotomous Questions: Comparing Models for Large-Scale Adaptive Testing (JJV, FP, JBG, EB, YB), pp. 618–619.
SIGITESIGITE-2015-ZhouCKNCUG #collaboration #feedback #student #using
M-CAFE 1.0: Motivating and Prioritizing Ongoing Student Feedback During MOOCs and Large on-Campus Courses using Collaborative Filtering (MZ, AC, SK, BN, CC, KU, KG), pp. 153–158.
ICPCICPC-2015-VendomeLBPGP #git #java
License usage and changes: a large-scale study of Java projects on GitHub (CV, MLV, GB, MDP, DMG, DP), pp. 218–228.
ICSMEICSME-2015-Balachandran #query #repository
Query by example in large-scale code repositories (VB), pp. 467–476.
ICSMEICSME-2015-MaigaHNSL #case study #empirical #experience
An empirical study on the handling of crash reports in a large software company: An experience report (AM, AHL, MN, KKS, AL), pp. 342–351.
ICSMEICSME-2015-WangPV #corpus #mining
Developing a model of loop actions by mining loop characteristics from a large code corpus (XW, LLP, KVS), pp. 51–60.
MSRMSR-2015-GuptaSPA #challenge #identification #overview #process
Identifying Software Process Management Challenges: Survey of Practitioners in a Large Global IT Company (MG, AS, SP, AMA), pp. 346–356.
MSRMSR-2015-WuMKGI #consistency #detection #nondeterminism #open source
A Method to Detect License Inconsistencies in Large-Scale Open Source Projects (YW, YM, TK, DMG, KI), pp. 324–333.
SANERSANER-2015-DamevskiSP #code search #developer #evaluation #metric #tool support
Scaling up evaluation of code search tools through developer usage metrics (KD, DCS, LLP), pp. 181–190.
SANERSANER-2015-HashimotoMI #fine-grained #source code
A comprehensive and scalable method for analyzing fine-grained source code change patterns (MH, AM, TI), pp. 351–360.
SANERSANER-2015-Jiang #integration #process
Improving the integration process of large software systems (YJ), p. 598.
SANERSANER-2015-Keivanloo0Z #clone detection #detection #java #repository
Threshold-free code clone detection for a large-scale heterogeneous Java repository (IK, FZ, YZ), pp. 201–210.
SANERSANER-2015-KochharTL #debugging #effectiveness #empirical #test coverage #testing
Code coverage and test suite effectiveness: Empirical study with real bugs in large systems (PSK, FT, DL), pp. 560–564.
SANERSANER-2015-MedicherlaK #analysis #approximate #precise
Precision vs. scalability: Context sensitive analysis with prefix approximation (RKM, RK), pp. 281–290.
SCAMSCAM-2015-AivaloglouHH #dataset #spreadsheet
A grammar for spreadsheet formulas evaluated on two large datasets (EA, DH, FH), pp. 121–130.
SCAMSCAM-2015-LemosPSL #code search #query #question #using
Can the use of types and query expansion help improve large-scale code search? (OALL, ACdP, HS, CVL), pp. 41–50.
ICALPICALP-v1-2015-AnshelevichKS #approximate
Envy-Free Pricing in Large Markets: Approximating Revenue and Welfare (EA, KK, SS), pp. 52–64.
ICALPICALP-v2-2015-Finkel #automaton #infinity #theorem #word
Incompleteness Theorems, Large Cardinals, and Automata over Infinite Words (OF), pp. 222–233.
ICFPICFP-2015-NewtonFV #adaptation
Adaptive lock-free maps: purely-functional to scalable (RRN, PPF, AV), pp. 218–229.
AIIDEAIIDE-2015-ChurchillB #architecture #game studies #robust
Hierarchical Portfolio Search: Prismata's Robust AI Architecture for Games with Large Search Spaces (DC, MB), pp. 16–22.
AIIDEAIIDE-2015-SifaDB #analysis #behaviour
Large-Scale Cross-Game Player Behavior Analysis on Steam (RS, AD, CB), pp. 198–204.
CoGCIG-2015-BaeKLKN #generative
Generation of an arbitrary shaped large maze by assembling mazes (CmB, EKK, JL, KJK, JCN), pp. 538–539.
FDGFDG-2015-RyanKFHOMW #game studies #interactive #visualisation
Large-Scale Interactive Visualizations of Nearly 12, 000 Games (JOR, EK, AMF, TH, TOM, MM, NWF).
CHICHI-2015-ChangLKS #behaviour #comprehension #gesture #mobile
Understanding Users’ Touch Behavior on Large Mobile Touch-Screens and Assisted Targeting by Tilting Gesture (YC, SL, KK, JS), pp. 1499–1508.
CHICHI-2015-EgelmanP #behaviour #security
Scaling the Security Wall: Developing a Security Behavior Intentions Scale (SeBIS) (SE, EP), pp. 2873–2882.
CHICHI-2015-GrevetG #prototype #social #using
Piggyback Prototyping: Using Existing, Large-Scale Social Computing Systems to Prototype New Ones (CG, EG), pp. 4047–4056.
CHICHI-2015-MiksikVLPNGHPIT #3d #interactive #recognition #semantics
The Semantic Paintbrush: Interactive 3D Mapping and Recognition in Large Outdoor Spaces (OM, VV, ML, RP, MN, SG, SLH, PP, SI, PHST), pp. 3317–3326.
CHICHI-2015-ParkOSJC #behaviour #image #web
A Large-Scale Study of User Image Search Behavior on the Web (JYP, NO, RS, AJ, CWC), pp. 985–994.
CSCWCSCW-2015-CoetzeeLFHH #interactive #learning
Structuring Interactions for Large-Scale Synchronous Peer Learning (DC, SL, AF, BH, MAH), pp. 1139–1152.
CSCWCSCW-2015-ReineckeG #named #online
LabintheWild: Conducting Large-Scale Online Experiments With Uncompensated Samples (KR, KZG), pp. 1364–1378.
CSCWCSCW-2015-SiangliulueAGD #collaboration #towards
Toward Collaborative Ideation at Scale: Leveraging Ideas from Others to Generate More Creative and Diverse Ideas (PS, KCA, KZG, SPD), pp. 937–945.
HCIDHM-EH-2015-MaruyamaKD #adaptation #simulation
MoCap-Based Adaptive Human-Like Walking Simulation in Laser-Scanned Large-Scale as-Built Environments (TM, SK, HD), pp. 193–204.
HCIDHM-EH-2015-TianLYJCS #analysis #video
Single-Variable Scenario Analysis of Vehicle-Pedestrian Potential Crash Based on Video Analysis Results of Large-Scale Naturalistic Driving Data (RT, LL, KY, FJ, YC, RS), pp. 295–304.
HCIDUXU-UI-2015-LiHF #quality #requirements #user interface #using
Scaling Preferences of Different Stakeholders — Using the Example of Prioritizing Quality Requirements on User Interface Texts (YL, TH, PF), pp. 75–86.
HCIHCI-IT-2015-OnishiST #mobile
Investigation of Transferring Touch Events for Controlling a Mobile Device with a Large Touchscreen (KO, BS, JT), pp. 250–261.
ICEISICEIS-v1-2015-CerqueiraOG #community #framework #network #social
A Framework for Analysing Dynamic Communities in Large-scale Social Networks (VC, MDBO, JG), pp. 235–242.
ICEISICEIS-v1-2015-CostaFMO #clustering #database
Sharding by Hash Partitioning — A Database Scalability Pattern to Achieve Evenly Sharded Database Clusters (CHC, JVBMF, PHMM, FCMBO), pp. 313–320.
ICEISICEIS-v1-2015-FuD #graph #named #social
ROBE — Knitting a Tight Hub for Shortest Path Discovery in Large Social Graphs (LF, JD), pp. 97–107.
ICEISICEIS-v1-2015-Hasheela #comparison #enterprise
On-premise ERP Organizational Post-implementation Practices — Comparison between Large Enterprises and Small and Medium-Sized Enterprises (VH), pp. 243–250.
ICEISICEIS-v1-2015-OsbornM #set
The mqr-tree for Very Large Object Sets (WO, MM), pp. 367–373.
ICEISICEIS-v2-2015-BayaADM #approach #composition #product line
Dynamic Large Scale Product Lines through Modularization Approach (AB, BEA, ID, ZM), pp. 439–444.
CIKMCIKM-2015-0002GD #information management #ranking #web
Ranking Deep Web Text Collections for Scalable Information Extraction (PB0, LG, CD), pp. 153–162.
CIKMCIKM-2015-AltingovdeCT #distributed #information retrieval
LSDS-IR'15: 2015 Workshop on Large-Scale and Distributed Systems for Information Retrieval (ISA, BBC, NT), pp. 1947–1948.
CIKMCIKM-2015-BeecksUH0 #database #multi #performance #similarity
Gradient-based Signatures for Efficient Similarity Search in Large-scale Multimedia Databases (CB, MSU, JH, TS0), pp. 1241–1250.
CIKMCIKM-2015-ChenCSS #graph #named
KSGM: Keynode-driven Scalable Graph Matching (XC, KSC, MLS, PS), pp. 1101–1110.
CIKMCIKM-2015-GarimellaMGS #graph
Scalable Facility Location for Massive Graphs on Pregel-like Systems (KG, GDFM, AG, MS), pp. 273–282.
CIKMCIKM-2015-JoKB #analysis #gpu #matrix #multi #network #performance #social
Efficient Sparse Matrix Multiplication on GPU for Large Social Network Analysis (YYJ, SWK, DHB), pp. 1261–1270.
CIKMCIKM-2015-KangGWM #algorithm #clustering #network
Scalable Clustering Algorithm via a Triangle Folding Processing for Complex Networks (YK, XG, WW0, DM), pp. 33–42.
CIKMCIKM-2015-LiuTL #learning #matrix #multi #named
MF-Tree: Matrix Factorization Tree for Large Multi-Class Learning (LL, PNT, XL), pp. 881–890.
CIKMCIKM-2015-RezvaniLXL #identification #network #social
Identifying Top-k Structural Hole Spanners in Large-Scale Social Networks (MR, WL, WX, CL), pp. 263–272.
CIKMCIKM-2015-SiersdorferKAZ #how #network #social #using
Who With Whom And How?: Extracting Large Social Networks Using Search Engines (SS, PK, HA, SZ), pp. 1491–1500.
CIKMCIKM-2015-Tomkins #analysis
Large-Scale Analysis of Dynamics of Choice Among Discrete Alternatives (AT), p. 1349.
CIKMCIKM-2015-WangCWD #ontology #owl #query #towards
Towards Scalable and Complete Query Explanation with OWL 2 EL Ontologies (ZW0, MC, KW, JD), pp. 743–752.
CIKMCIKM-2015-WangYWH #proving
Large-Scale Question Answering with Joint Embedding and Proof Tree Decoding (ZW, SY, HW, XH), pp. 1783–1786.
CIKMCIKM-2015-Wei0LQST #knowledge base #network
Large-scale Knowledge Base Completion: Inferring via Grounding Network Sampling over Selected Instances (ZW, JZ0, KL0, ZQ, ZS, GT), pp. 1331–1340.
ICMLICML-2015-Abbasi-YadkoriB #crowdsourcing #markov #problem
Large-Scale Markov Decision Problems with KL Control Cost and its Application to Crowdsourcing (YAY, PLB, XC, AM), pp. 1053–1062.
ICMLICML-2015-Betancourt #monte carlo
The Fundamental Incompatibility of Scalable Hamiltonian Monte Carlo and Naive Data Subsampling (MB), pp. 533–540.
ICMLICML-2015-DjolongaK #modelling
Scalable Variational Inference in Log-supermodular Models (JD, AK), pp. 1804–1813.
ICMLICML-2015-FilipponeE #linear #probability #process
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE) (MF, RE), pp. 1015–1024.
ICMLICML-2015-GanCHCC #analysis #modelling #topic
Scalable Deep Poisson Factor Analysis for Topic Modeling (ZG, CC, RH, DEC, LC), pp. 1823–1832.
ICMLICML-2015-GrosseS #matrix
Scaling up Natural Gradient by Sparsely Factorizing the Inverse Fisher Matrix (RBG, RS), pp. 2304–2313.
ICMLICML-2015-HanMS #probability
Large-scale log-determinant computation through stochastic Chebyshev expansions (IH, DM, JS), pp. 908–917.
ICMLICML-2015-Hernandez-Lobato15b #learning #network #probability
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks (JMHL, RA), pp. 1861–1869.
ICMLICML-2015-HuHDX #distributed #parametricity
Large-scale Distributed Dependent Nonparametric Trees (ZH, QH, AD, EPX), pp. 1651–1659.
ICMLICML-2015-JohnsonG #named #optimisation
Blitz: A Principled Meta-Algorithm for Scaling Sparse Optimization (TJ, CG), pp. 1171–1179.
ICMLICML-2015-LimKPJ #performance #set
Double Nyström Method: An Efficient and Accurate Nyström Scheme for Large-Scale Data Sets (WL, MK, HP, KJ), pp. 1367–1375.
ICMLICML-2015-LiuFFM #modelling #relational
Scalable Model Selection for Large-Scale Factorial Relational Models (CL, LF, RF, YM), pp. 1227–1235.
ICMLICML-2015-MaLF #analysis #canonical #correlation #dataset #linear
Finding Linear Structure in Large Datasets with Scalable Canonical Correlation Analysis (ZM, YL, DPF), pp. 169–178.
ICMLICML-2015-ParkNZSD #collaboration #ranking
Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons (DP, JN, JZ, SS, ISD), pp. 1907–1916.
ICMLICML-2015-SamoR #parametricity #process
Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes (YLKS, SR), pp. 2227–2236.
ICMLICML-2015-SnoekRSKSSPPA #network #optimisation #using
Scalable Bayesian Optimization Using Deep Neural Networks (JS, OR, KS, RK, NS, NS, MMAP, P, RPA), pp. 2171–2180.
ICMLICML-2015-TraskGR #modelling #order #word
Modeling Order in Neural Word Embeddings at Scale (AT, DG, MR), pp. 2266–2275.
ICMLICML-2015-WenKA #combinator #learning #performance
Efficient Learning in Large-Scale Combinatorial Semi-Bandits (ZW, BK, AA), pp. 1113–1122.
ICMLICML-2015-WilsonN #kernel #process
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) (AGW, HN), pp. 1775–1784.
KDDKDD-2015-Agarwal #machine learning #statistics #web
Scaling Machine Learning and Statistics for Web Applications (DA), p. 1621.
KDDKDD-2015-AhnKLRW #distributed #matrix #probability #using
Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC (SA, AK, NL, SR, MW), pp. 9–18.
KDDKDD-2015-CaoWYR #dataset #online
Online Outlier Exploration Over Large Datasets (LC, MW, DY, EAR), pp. 89–98.
KDDKDD-2015-ElenbergSBD #distributed #framework #graph
Beyond Triangles: A Distributed Framework for Estimating 3-profiles of Large Graphs (ERE, KS, MB, AGD), pp. 229–238.
KDDKDD-2015-GogaLSTG #network #on the #online #reliability #social
On the Reliability of Profile Matching Across Large Online Social Networks (OG, PL, RS, RT, KPG), pp. 1799–1808.
KDDKDD-2015-GrbovicRDBSBS #e-commerce #recommendation
E-commerce in Your Inbox: Product Recommendations at Scale (MG, VR, ND, NB, JS, VB, DS), pp. 1809–1818.
KDDKDD-2015-HallacLB #clustering #graph #network #optimisation
Network Lasso: Clustering and Optimization in Large Graphs (DH, JL, SB), pp. 387–396.
KDDKDD-2015-KarakasidisKV #privacy
Scalable Blocking for Privacy Preserving Record Linkage (AK, GK, VSV), pp. 527–536.
KDDKDD-2015-KimS
Discovering Collective Narratives of Theme Parks from Large Collections of Visitors’ Photo Streams (GK, LS), pp. 1899–1908.
KDDKDD-2015-LaptevAF #automation #detection #framework
Generic and Scalable Framework for Automated Time-series Anomaly Detection (NL, SA, IF), pp. 1939–1947.
KDDKDD-2015-LucierOS #distributed #network
Influence at Scale: Distributed Computation of Complex Contagion in Networks (BL, JO, YS), pp. 735–744.
KDDKDD-2015-MitzenmacherPPT #clique #detection #network
Scalable Large Near-Clique Detection in Large-Scale Networks via Sampling (MM, JP, RP, CET, SCX), pp. 815–824.
KDDKDD-2015-SethiYRVR #classification #machine learning #using
Scalable Machine Learning Approaches for Neighborhood Classification Using Very High Resolution Remote Sensing Imagery (MS, YY, AR, RRV, SR), pp. 2069–2078.
KDDKDD-2015-ShanahanD #distributed #using
Large Scale Distributed Data Science using Apache Spark (JGS, LD), pp. 2323–2324.
KDDKDD-2015-TangQM #named #network #predict
PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks (JT, MQ, QM), pp. 1165–1174.
KDDKDD-2015-TranHXFB #coordination #probability
Scaling Up Stochastic Dual Coordinate Ascent (KT, SH, LX, TF, MB), pp. 1185–1194.
KDDKDD-2015-XuCFSB #challenge #framework #network #social #testing
From Infrastructure to Culture: A/B Testing Challenges in Large Scale Social Networks (YX, NC, AF, OS, AB), pp. 2227–2236.
KDDKDD-2015-YanRHC #distributed #learning #modelling #optimisation #performance
Performance Modeling and Scalability Optimization of Distributed Deep Learning Systems (FY, OR, YH, TMC), pp. 1355–1364.
KDDKDD-2015-ZhangTMTJL #named #network #performance #similarity
Panther: Fast Top-k Similarity Search on Large Networks (JZ, JT, CM, HT, YJ, JL), pp. 1445–1454.
KDDKDD-2015-ZhengP #fault #kernel
L∞ Error and Bandwidth Selection for Kernel Density Estimates of Large Data (YZ, JMP), pp. 1533–1542.
KDDKDD-2015-ZhongLSR #recommendation
Building Discriminative User Profiles for Large-scale Content Recommendation (EZ, NL, YS, SR), pp. 2277–2286.
RecSysRecSys-2015-BistaffaFCR #recommendation #social
Recommending Fair Payments for Large-Scale Social Ridesharing (FB, AF, GC, SDR), pp. 139–146.
RecSysRecSys-2015-ChristoffelPNB #random #recommendation
Blockbusters and Wallflowers: Accurate, Diverse, and Scalable Recommendations with Random Walks (FC, BP, CN, AB), pp. 163–170.
RecSysRecSys-2015-HuD #machine learning #recommendation
Scalable Recommender Systems: Where Machine Learning Meets Search (SYDH, JD), pp. 365–366.
RecSysRecSys-2015-LerallutGR #realtime #recommendation
Large-Scale Real-Time Product Recommendation at Criteo (RL, DG, NLR), p. 232.
RecSysRecSys-2015-Nemeth #recommendation
Scaling Up Recommendation Services in Many Dimensions (BN), p. 233.
SEKESEKE-2015-ZhuSCW #programming #stack overflow #taxonomy
Building a Large-scale Software Programming Taxonomy from Stackoverflow (JZ, BS, XC, HW), pp. 391–396.
SIGIRSIGIR-2015-Alonso #lessons learnt #quality
Practical Lessons for Gathering Quality Labels at Scale (OA), pp. 1089–1092.
SIGIRSIGIR-2015-CanutoGSRM #approach #classification #documentation #parallel #performance
An Efficient and Scalable MetaFeature-based Document Classification Approach based on Massively Parallel Computing (SDC, MAG, WS, TR, WM), pp. 333–342.
SIGIRSIGIR-2015-ChenLZLS #approximate #matrix #named #recommendation
WEMAREC: Accurate and Scalable Recommendation through Weighted and Ensemble Matrix Approximation (CC, DL, YZ, QL, LS), pp. 303–312.
SIGIRSIGIR-2015-EswaranBP #classification #modelling #topic
Modeling Website Topic Cohesion at Scale to Improve Webpage Classification (DE, PNB, JJPI), pp. 787–790.
SIGIRSIGIR-2015-NovakBZ #image #retrieval #using
Large-scale Image Retrieval using Neural Net Descriptors (DN, MB, PZ), pp. 1039–1040.
SIGIRSIGIR-2015-PanYLNM #semantics #visual notation
Semi-supervised Hashing with Semantic Confidence for Large Scale Visual Search (YP, TY, HL, CWN, TM), pp. 53–62.
SIGIRSIGIR-2015-SchamoniR #information retrieval #orthogonal
Combining Orthogonal Information in Large-Scale Cross-Language Information Retrieval (SS, SR), pp. 943–946.
MODELSMoDELS-J-2011-Espinazo-PaganCM15 #model management #repository
A repository for scalable model management (JEP, JSC, JGM), pp. 219–239.
ECMFAECMFA-2015-BarmpisSK #incremental #towards
Towards Incremental Updates in Large-Scale Model Indexes (KB, SMS, DSK), pp. 137–153.
MoDELSMoDELS-2015-LettnerEGP #case study #experience #feature model #industrial #lessons learnt #modelling
Feature modeling of two large-scale industrial software systems: Experiences and lessons learned (DL, KE, PG, HP), pp. 386–395.
SPLCSPLC-2015-LiangGCR #analysis #feature model #modelling #satisfiability
SAT-based analysis of large real-world feature models is easy (JH(L, VG, KC, VR), pp. 91–100.
ECOOPECOOP-2015-ParkR #javascript #precise #static analysis
Scalable and Precise Static Analysis of JavaScript Applications via Loop-Sensitivity (CP, SR), pp. 735–756.
OOPSLAOOPSLA-2015-0003KLS #data type #memory management #multi #performance
Fast, multicore-scalable, low-fragmentation memory allocation through large virtual memory and global data structures (MA, CMK, ML, AS), pp. 451–469.
OOPSLAOOPSLA-2015-BielikRV #android #concurrent #detection
Scalable race detection for Android applications (PB, VR, MTV), pp. 332–348.
PLDIPLDI-2015-MehtaY #compilation #optimisation #source code
Improving compiler scalability: optimizing large programs at small price (SM, PCY), pp. 143–152.
POPLPOPL-2015-DoddsHK #stack
A Scalable, Correct Time-Stamped Stack (MD, AH, CMK), pp. 233–246.
ASEASE-2015-KoLDR #framework #javascript #static analysis
Practically Tunable Static Analysis Framework for Large-Scale JavaScript Applications (T) (YK, HL, JD, SR), pp. 541–551.
ASEASE-2015-KowalTTS #modelling #parametricity #performance #variability
Scaling Size and Parameter Spaces in Variability-Aware Software Performance Models (T) (MK, MT, MT, IS), pp. 407–417.
ASEASE-2015-LerchSBM #abstraction #analysis #bound #data flow
Access-Path Abstraction: Scaling Field-Sensitive Data-Flow Analysis with Unbounded Access Paths (T) (JL, JS, EB, MM), pp. 619–629.
ESEC-FSEESEC-FSE-2015-Florio #adaptation #distributed #self
Decentralized self-adaptation in large-scale distributed systems (LF), pp. 1022–1025.
ESEC-FSEESEC-FSE-2015-ParameshwaranBS
Auto-patching DOM-based XSS at scale (IP, EB, SS, HD, AS, PS), pp. 272–283.
ICSEICSE-v1-2015-BaresiKR #ltl #performance #specification #verification
Efficient Scalable Verification of LTL Specifications (LB, MMPK, MR), pp. 711–721.
ICSEICSE-v1-2015-HenardPHT #configuration management #constraints #multi #product line #theorem proving
Combining Multi-Objective Search and Constraint Solving for Configuring Large Software Product Lines (CH, MP, MH, YLT), pp. 517–528.
ICSEICSE-v1-2015-PapadakisJHT #compilation #detection #effectiveness #empirical #equivalence #performance
Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and Effective Equivalent Mutant Detection Technique (MP, YJ, MH, YLT), pp. 936–946.
ICSEICSE-v1-2015-SmithBZ #exclamation #tool support
Build It Yourself! Homegrown Tools in a Large Software Company (EKS, CB, TZ), pp. 369–379.
ICSEICSE-v1-2015-WeissRL #fault #program analysis
Database-Backed Program Analysis for Scalable Error Propagation (CW, CRG, BL), pp. 586–597.
ICSEICSE-v2-2015-BishopHXTH #contest #experience
Code Hunt: Experience with Coding Contests at Scale (JB, RNH, TX, NT, JdH), pp. 398–407.
ICSEICSE-v2-2015-DybaD #agile #development #project management #self
Agile Project Management: From Self-Managing Teams to Large-Scale Development (TD, TD), pp. 945–946.
ICSEICSE-v2-2015-Jiang #testing
Load Testing Large-Scale Software Systems (ZMJJ), pp. 955–956.
ICSEICSE-v2-2015-Kallehbasti #modelling #uml #verification
Scalable Formal Verification of UML Models (MMPK), pp. 847–850.
ICSEICSE-v2-2015-KlasBDSH #analysis #evaluation #modelling #testing
A Large-Scale Technology Evaluation Study: Effects of Model-based Analysis and Testing (MK, TB, AD, TS, PH), pp. 119–128.
ICSEICSE-v2-2015-RajanNL0 #behaviour #repository #specification
Inferring Behavioral Specifications from Large-scale Repositories by Leveraging Collective Intelligence (HR, TNN, GTL, RD), pp. 579–582.
ICSEICSE-v2-2015-Vendome #case study #git
A Large Scale Study of License Usage on GitHub (CV), pp. 772–774.
ICSEICSE-v2-2015-Zhang #mutation testing #testing
Scalability Studies on Selective Mutation Testing (JZ), pp. 851–854.
SACSAC-2015-BarringtonFD #multi
A scalable multi-producer multi-consumer wait-free ring buffer (AB, SDF, DD), pp. 1321–1328.
SACSAC-2015-BergentiCG #framework #game studies #mobile #platform #social
A scalable platform for mobile social gaming (FB, GC, DG), pp. 2239–2244.
SACSAC-2015-CanoA #feedback #multi #streaming
Feedback management for scaling clients in streaming multicast (JC, LA), pp. 669–671.
SACSAC-2015-CharuvakaR #approximate #classification #coordination
Approximate block coordinate descent for large scale hierarchical classification (AC, HR), pp. 837–844.
SACSAC-2015-ChengKWT #semantics #throughput #web
High throughput indexing for large-scale semantic web data (LC, SK, TEW, GT), pp. 416–422.
SACSAC-2015-KambonaBM #middleware #named #realtime #web
Serena: scalable middleware for real-time web applications (KK, EGB, WDM), pp. 802–805.
SACSAC-2015-KimK #using
Dual region write buffering: making large-scale nonvolatile buffer using small capacitor in SSD (DK, SK), pp. 2039–2046.
SACSAC-2015-MinHJCH #distributed #performance #process
An efficient backup-recovery technique to process large data in distributed key-value store (DM, TH, JJ, YC, JH), pp. 2072–2074.
SACSAC-2015-MonteiroL #clustering #power management #web
Scalable model for dynamic configuration and power management in virtualized heterogeneous web clusters (AFM, OL), pp. 464–467.
SACSAC-2015-MukherjeeKCDCM #as a service #design #framework #performance #platform
Performance characterization and scalable design of sensing-as-a-service platform (TM, AK, DC, KD, AC, AM), pp. 592–595.
SACSAC-2015-RiediBP #algorithm #performance
Channel and power allocation algorithm to optimize the performance of large WLANs (MR, GGB, MEP), pp. 673–679.
SACSAC-2015-SarmentoCG #evolution #visualisation
Visualization of evolving large scale ego-networks (RS, MC, JG), pp. 960–962.
GPCEGPCE-2015-AlsharaSTBDS #component #inheritance #migration #object-oriented
Migrating large object-oriented Applications into component-based ones: instantiation and inheritance transformation (ZA, ADS, CT, HLB, CD, AS), pp. 55–64.
ASPLOSASPLOS-2015-DavidGT #concurrent #data type
Asynchronized Concurrency: The Secret to Scaling Concurrent Search Data Structures (TD, RG, VT), pp. 631–644.
ASPLOSASPLOS-2015-MatveevS #hardware #hybrid #memory management #transaction
Reduced Hardware NOrec: A Safe and Scalable Hybrid Transactional Memory (AM, NS), pp. 59–71.
CASECASE-2015-GallertLRJT #2d #3d #biology #industrial #throughput
Biological high throughput screening of 2D and 3D cell cultures for future industrial up-scaling (CG, RL, TR, SJ, KT), pp. 1527–1532.
CASECASE-2015-WatteyneAV #lessons learnt
Lessons learned from large-scale dense IEEE802.15.4 connectivity traces (TW, CA, XV), pp. 145–150.
CCCC-2015-AllenSK #analysis #points-to #staged
Staged Points-to Analysis for Large Code Bases (NA, BS, PK), pp. 131–150.
CCCC-2015-HollingumS #context-free grammar #framework #reachability #towards
Towards a Scalable Framework for Context-Free Language Reachability (NH, BS), pp. 193–211.
CGOCGO-2015-OanceaR #analysis #induction
Scalable conditional induction variables (CIV) analysis (CEO, LR), pp. 213–224.
DACDAC-2015-ChiangCLJ #design #power management
Scalable sequence-constrained retention register minimization in power gating design (TWC, KHC, YTL, JHRJ), p. 6.
DACDAC-2015-HanF #analysis #approach #cpu #gpu #graph
Transient-simulation guided graph sparsification approach to scalable harmonic balance (HB) analysis of post-layout RF circuits leveraging heterogeneous CPU-GPU computing systems (LH, ZF), p. 6.
DACDAC-2015-PolianF #architecture #automation #challenge #design #quantum
Design automation challenges for scalable quantum architectures (IP, AGF), p. 6.
DACDAC-2015-TavanaHPSH #named
ElasticCore: enabling dynamic heterogeneity with joint core and voltage/frequency scaling (MKT, MHH, DP, IS, HH), p. 6.
DACDAC-2015-WenWHLHLC #framework #hybrid
An EDA framework for large scale hybrid neuromorphic computing systems (WW, CRW, XH, BL, TYH, XL, YC), p. 6.
DACDAC-2015-ZhuangYKWC #algorithm #exponential #framework #performance #simulation #using
An algorithmic framework for efficient large-scale circuit simulation using exponential integrators (HZ, WY, IK, XW, CKC), p. 6.
DATEDATE-2015-0001KVSMA #adaptation #embedded #energy #nondeterminism
Workload uncertainty characterization and adaptive frequency scaling for energy minimization of embedded systems (AD, AK, BV, RAS, GVM, BMAH), pp. 43–48.
DATEDATE-2015-BalboniFB #configuration management #distributed #latency #multi #network #using
Synergistic use of multiple on-chip networks for ultra-low latency and scalable distributed routing reconfiguration (MB, JF, DB), pp. 806–811.
DATEDATE-2015-GomonyGAAG #memory management #realtime
A generic, scalable and globally arbitrated memory tree for shared DRAM access in real-time systems (MDG, JG, BA, NCA, KGWG), pp. 193–198.
DATEDATE-2015-HuangHC #algorithm #clustering #framework #multi #problem
Clustering-based multi-touch algorithm framework for the tracking problem with a large number of points (SLH, SYH, CPC), pp. 719–724.
DATEDATE-2015-MunchPHH #embedded #manycore #named #realtime #using
MPIOV: scaling hardware-based I/O virtualization for mixed-criticality embedded real-time systems using non transparent bridges to (multi-core) multi-processor systems (DM, MP, OH, AH), pp. 579–584.
DATEDATE-2015-SuHL #encoding #named #recognition
SubHunter: a high-performance and scalable sub-circuit recognition method with Prüfer-encoding (HYS, CHH, YLL), pp. 1583–1586.
DATEDATE-2015-WaqasGKSBSVC #heuristic #online #scheduling
A re-entrant flowshop heuristic for online scheduling of the paper path in a large scale printer (UW, MG, JK, LJS, TB, SS, PV, HC), pp. 573–578.
DATEDATE-2015-WeiDC #architecture #memory management #multi
A scalable and high-density FPGA architecture with multi-level phase change memory (CW, AD, DC), pp. 1365–1370.
DATEDATE-2015-ZhangZCY
Exploiting DRAM restore time variations in deep sub-micron scaling (XZ, YZ, BRC, JY), pp. 477–482.
HPCAHPCA-2015-BeckmannTS #distributed
Scaling distributed cache hierarchies through computation and data co-scheduling (NB, PAT, DS), pp. 538–550.
HPCAHPCA-2015-MenezoPG #energy #hybrid #performance #protocol
Flask coherence: A morphable hybrid coherence protocol to balance energy, performance and scalability (LGM, VP, JÁG), pp. 198–209.
HPCAHPCA-2015-NeuwirthFNB #architecture #communication
Scalable communication architecture for network-attached accelerators (SN, DF, MN, UB), pp. 627–638.
HPCAHPCA-2015-TiwariGRMRVOLDN #comprehension #design #fault #gpu
Understanding GPU errors on large-scale HPC systems and the implications for system design and operation (DT, SG, JHR, DM, PR, SSV, DAGdO, DL, ND, POAN, LC, ASB), pp. 331–342.
HPCAHPCA-2015-WangM #approach #architecture #manycore #named #resource management
XChange: A market-based approach to scalable dynamic multi-resource allocation in multicore architectures (XW, JFM), pp. 113–125.
HPCAHPCA-2015-WonKKJPS #network
Overcoming far-end congestion in large-scale networks (JW, GK, JK, TJ, MP, SS), pp. 415–427.
HPCAHPCA-2015-ZhaoY #analysis #distance #manycore #reuse
Studying the impact of multicore processor scaling on directory techniques via reuse distance analysis (MZ, DY), pp. 590–602.
HPDCHPDC-2015-AkiyamaT #concurrent #thread
Uni-Address Threads: Scalable Thread Management for RDMA-Based Work Stealing (SA, KT), pp. 15–26.
HPDCHPDC-2015-KaxirasKNRS #approach #distributed #execution #memory management
Turning Centralized Coherence and Distributed Critical-Section Execution on their Head: A New Approach for Scalable Distributed Shared Memory (SK, DK, MN, AR, KFS), pp. 3–14.
HPDCHPDC-2015-WahibM #automation #gpu #kernel
Automated GPU Kernel Transformations in Large-Scale Production Stencil Applications (MW, NM), pp. 259–270.
HPDCHPDC-2015-WangZQLMR #consistency #distributed #towards
Towards Scalable Distributed Workload Manager with Monitoring-Based Weakly Consistent Resource Stealing (KW, XZ, KQ, ML, BM, IR), pp. 219–222.
PDPPDP-2015-ConinckKVSBMF #algebra #matrix #parallel #predict #towards
Towards Parallel Large-Scale Genomic Prediction by Coupling Sparse and Dense Matrix Algebra (ADC, DK, FV, OS, BDB, SM, JF), pp. 747–750.
PDPPDP-2015-Eitschberger0 #energy #manycore #scheduling
Energy-Efficient Task Scheduling in Manycore Processors with Frequency Scaling Overhead (PE, JK), pp. 541–548.
PDPPDP-2015-El-KazzazE #detection #framework #ubiquitous #using
A Hadoop-Based Framework for Large-Scale Landmine Detection Using Ubiquitous Big Satellite Imaging Data (SEK, AEM), pp. 274–278.
PDPPDP-2015-MorenoULC #data flow #framework #named #performance
NanoCheckpoints: A Task-Based Asynchronous Dataflow Framework for Efficient and Scalable Checkpoint/Restart (JAM, OSÜ, JL, AC), pp. 99–102.
PDPPDP-2015-RohrL #flexibility #library #multi
A Flexible and Portable Large-Scale DGEMM Library for Linpack on Next-Generation Multi-GPU Systems (DR, VL), pp. 664–668.
PPoPPPPoPP-2015-AlistarhKLS #queue
The SprayList: a scalable relaxed priority queue (DA, JK, JL, NS), pp. 11–20.
PPoPPPPoPP-2015-ArbelM #concurrent
Predicate RCU: an RCU for scalable concurrent updates (MA, AM), pp. 21–30.
PPoPPPPoPP-2015-Golan-GuetaRSY #automation #semantics
Automatic scalable atomicity via semantic locking (GGG, GR, MS, EY), pp. 31–41.
PPoPPPPoPP-2015-SeoKK #graph #named #streaming
GStream: a graph streaming processing method for large-scale graphs on GPUs (HS, JK, MSK), pp. 253–254.
PPoPPPPoPP-2015-ThebaultPD #3d #assembly #case study #implementation #matrix #performance
Scalable and efficient implementation of 3d unstructured meshes computation: a case study on matrix assembly (LT, EP, QD), pp. 120–129.
SOSPSOSP-2015-AguileraLW #named #sql #web
Yesquel: scalable sql storage for web applications (MKA, JBL, MW), pp. 245–262.
SOSPSOSP-2015-FangNXDL #memory management #source code
Interruptible tasks: treating memory pressure as interrupts for highly scalable data-parallel programs (LF, KN, G(X, BD, SL), pp. 394–409.
SOSPSOSP-2015-HooffLZZ #analysis #named
Vuvuzela: scalable private messaging resistant to traffic analysis (JvdH, DL, MZ, NZ), pp. 137–152.
SOSPSOSP-2015-LeePKMO #implementation #latency
Implementing linearizability at large scale and low latency (CL, SJP, AK, SM, JKO), pp. 71–86.
FASEFASE-2015-GomezTSC #modelling #persistent
Map-Based Transparent Persistence for Very Large Models (AG, MT, GS, JC), pp. 19–34.
STOCSTOC-2015-DingSS #proving #satisfiability
Proof of the Satisfiability Conjecture for Large k (JD, AS, NS), pp. 59–68.
TACASTACAS-2015-ChakrabortyFMSV #generative #on the #parallel #satisfiability
On Parallel Scalable Uniform SAT Witness Generation (SC, DJF, KSM, SAS, MYV), pp. 304–319.
TACASTACAS-2015-GuanTAS0 #analysis #refinement
Scalable Timing Analysis with Refinement (NG, YT, JA, MS, WY), pp. 3–18.
TACASTACAS-2015-KumarSK #concept #slicing
Value Slice: A New Slicing Concept for Scalable Property Checking (SK, AS, UPK), pp. 101–115.
ICLPICLP-J-2015-MannaRT #consistency #query
Taming primary key violations to query large inconsistent data via ASP (MM, FR, GT), pp. 696–710.
ICSTICST-2015-LiEGO #big data #framework
A Scalable Big Data Test Framework (NL, AE, YG, JO), pp. 1–2.
ISSTAISSTA-2015-HuangDMD #analysis #android #precise
Scalable and precise taint analysis for Android (WH, YD, AM, JD), pp. 106–117.
ISSTAISSTA-2015-WangGMC #android #approach #clone detection #detection #named
WuKong: a scalable and accurate two-phase approach to Android app clone detection (HW, YG, ZM, XC), pp. 71–82.
ICSTSAT-2015-MangalZNN #framework #lazy evaluation #named #satisfiability
Volt: A Lazy Grounding Framework for Solving Very Large MaxSAT Instances (RM, XZ, AVN, MN), pp. 299–306.
TAPTAP-2015-AichernigNT #behaviour #generative #incremental #modelling #testing
Scalable Incremental Test-case Generation from Large Behavior Models (BKA, DN, ST), pp. 1–18.
ECSAECSA-2014-XiongFPM #architecture #as a service #cost analysis #performance #platform
Scalable Architectures for Platform-as-a-Service Clouds: Performance and Cost Analysis (HX, FF, CP, NM), pp. 226–233.
WICSAWICSA-2014-AmorimAM #architecture #ecosystem
Scalability of Ecosystem Architectures (SdSA, ESdA, JDM), pp. 49–52.
DRRDRR-2014-JainOD #documentation #image #retrieval #using
Scalable ranked retrieval using document images (RJ, DWO, DSD), p. ?–15.
HTHT-2014-AbbasiTL #learning #using
Scalable learning of users’ preferences using networked data (MAA, JT, HL), pp. 4–12.
HTHT-2014-ChengKWT #architecture #distributed #memory management #performance #rdf
A two-tier index architecture for fast processing large RDF data over distributed memory (LC, SK, TEW, GT), pp. 300–302.
HTHT-2014-GouritenMS #adaptation #crawling
Scalable, generic, and adaptive systems for focused crawling (GG, SM, PS), pp. 35–45.
HTHT-2014-LacicKT #named #online #recommendation #social
SocRecM: a scalable social recommender engine for online marketplaces (EL, DK, CT), pp. 308–310.
JCDLJCDL-2014-ChenKG #library #metadata
The feasibility of investing in manual correction of metadata for a large-scale digital library (HHC, MK, CLG), pp. 225–228.
JCDLJCDL-2014-GaoWLXMW #performance #retrieval
Fast Image-based Chinese Calligraphic Character Retrieval on Large Scale Data (PG, JW, YL, YX, TM, BW), pp. 211–220.
JCDLJCDL-2014-Hall #library
Explore the stacks: A system for exploration in large digital libraries (MMH), pp. 417–418.
JCDLJCDL-2014-JurikBFM #repository
Bridging the gap between real world repositories and Scalable Preservation Environments (BAJ, AAB, RBFN, PMD), pp. 127–136.
JCDLJCDL-2014-KanhabuaNN #analysis #memory management #what #wiki
What triggers human remembering of events? A large-scale analysis of catalysts for collective memory in Wikipedia (NK, TNN, CN), pp. 341–350.
JCDLJCDL-2014-ZhouTG #analysis #web
Extraction and analysis of referenced web links in large-scale scholarly articles (KZ, RT, CG), pp. 451–452.
SIGMODSIGMOD-2014-AlvanakiM #correlation #set
Tracking set correlations at large scale (FA, SM), pp. 1507–1518.
SIGMODSIGMOD-2014-BailisFHGS #transaction
Scalable atomic visibility with RAMP transactions (PB, AF, JMH, AG, IS), pp. 27–38.
SIGMODSIGMOD-2014-CaiGLPVJ #algorithm #comparison #implementation #machine learning #platform
A comparison of platforms for implementing and running very large scale machine learning algorithms (ZC, ZJG, SL, LLP, ZV, CMJ), pp. 1371–1382.
SIGMODSIGMOD-2014-ChenGLMPVK #manycore #named
Palette: enabling scalable analytics for big-memory, multicore machines (FC, TG, JL, MM, JP, KV, MK), pp. 705–708.
SIGMODSIGMOD-2014-CuiXWW #community #graph
Local search of communities in large graphs (WC, YX, HW, WW), pp. 991–1002.
SIGMODSIGMOD-2014-HuangCQTY #community #graph #query
Querying k-truss community in large and dynamic graphs (XH, HC, LQ, WT, JXY), pp. 1311–1322.
SIGMODSIGMOD-2014-KaranasosBKOEXJ #optimisation #platform #query
Dynamically optimizing queries over large scale data platforms (KK, AB, MK, , VE, CX, JJ), pp. 943–954.
SIGMODSIGMOD-2014-KimHLPY #framework #graph #named #parallel
OPT: a new framework for overlapped and parallel triangulation in large-scale graphs (JK, WSH, SL, KP, HY), pp. 637–648.
SIGMODSIGMOD-2014-KusumotoMK #similarity
Scalable similarity search for SimRank (MK, TM, KiK), pp. 325–336.
SIGMODSIGMOD-2014-LiuWZZK #behaviour #modelling #named #social
HYDRA: large-scale social identity linkage via heterogeneous behavior modeling (SL, SW, FZ, JZ, RK), pp. 51–62.
SIGMODSIGMOD-2014-MondalD #graph #named #query
EAGr: supporting continuous ego-centric aggregate queries over large dynamic graphs (JM, AD), pp. 1335–1346.
SIGMODSIGMOD-2014-PolychroniouR #clustering #in memory
A comprehensive study of main-memory partitioning and its application to large-scale comparison- and radix-sort (OP, KAR), pp. 755–766.
SIGMODSIGMOD-2014-QinYCCZL #graph #pipes and filters
Scalable big graph processing in MapReduce (LQ, JXY, LC, HC, CZ, XL), pp. 827–838.
SIGMODSIGMOD-2014-ShaoCCMYX #graph #parallel
Parallel subgraph listing in a large-scale graph (YS, BC, LC, LM, JY, NX), pp. 625–636.
SIGMODSIGMOD-2014-WuJZ #graph #nearest neighbour #performance #query #random
Fast and unified local search for random walk based k-nearest-neighbor query in large graphs (YW, RJ, XZ), pp. 1139–1150.
SIGMODSIGMOD-2014-ZengGGMZ #approximate #named #query
ABS: a system for scalable approximate queries with accuracy guarantees (KZ, SG, JG, BM, CZ), pp. 1067–1070.
SIGMODSIGMOD-2014-ZhangYFLY #named #realtime
OceanRT: real-time analytics over large temporal data (SZ, YY, WF, LL, MY), pp. 1099–1102.
SIGMODSIGMOD-2014-ZhuLWX #approach #graph #order #query #reachability
Reachability queries on large dynamic graphs: a total order approach (ADZ, WL, SW, XX), pp. 1323–1334.
VLDBVLDB-2014-AlsubaieeAABBBCCCFGGHKLLOOPTVWW #named #open source
AsterixDB: A Scalable, Open Source BDMS (SA, YA, HA, AB, VRB, YB, MJC, IC, MC, KF, EG, RG, ZH, YSK, CL, GL, JMO, NO, PP, VJT, RV, JW, TW), pp. 1905–1916.
VLDBVLDB-2014-BoehmTRSTBV #hybrid #machine learning #parallel
Hybrid Parallelization Strategies for Large-Scale Machine Learning in SystemML (MB, ST, BR, PS, YT, DB, SV), pp. 553–564.
VLDBVLDB-2014-BrunoKW #distributed
Advanced Join Strategies for Large-Scale Distributed Computation (NB, YK, MCW), pp. 1484–1495.
VLDBVLDB-2014-ElseidyASK #graph #mining #named
GRAMI: Frequent Subgraph and Pattern Mining in a Single Large Graph (ME, EA, SS, PK), pp. 517–528.
VLDBVLDB-2014-ElseidyEVK #adaptation #online
Scalable and Adaptive Online Joins (ME, AE, AV, CK), pp. 441–452.
VLDBVLDB-2014-GuptaSGGZLL #detection #graph #online #realtime #recommendation #twitter
Real-Time Twitter Recommendation: Online Motif Detection in Large Dynamic Graphs (PG, VS, AG, SG, VZ, QL, JL), pp. 1379–1380.
VLDBVLDB-2014-GuptaYGKCLWDKABHCSJSGVA #named #realtime
Mesa: Geo-Replicated, Near Real-Time, Scalable Data Warehousing (AG, FY, JG, AK, KC, KL, SW, SGD, ARK, AA, SB, MH, JC, MS, DJ, JS, AG, SV, DA), pp. 1259–1270.
VLDBVLDB-2014-HuangBJW #network #realtime
Large Scale Real-time Ridesharing with Service Guarantee on Road Networks (YH, FB, RJ, XSW), pp. 2017–2028.
VLDBVLDB-2014-Jiang0OTW #big data #named
epiC: an Extensible and Scalable System for Processing Big Data (DJ, GC, BCO, KLT, SW), pp. 541–552.
VLDBVLDB-2014-KonstantinidisA #constraints #integration #optimisation
Optimizing the Chase: Scalable Data Integration under Constraints (GK, JLA), pp. 1869–1880.
VLDBVLDB-2014-KuhlenkampKR #benchmark #database #distributed #metric
Benchmarking Scalability and Elasticity of Distributed Database Systems (JK, MK, OR), pp. 1219–1230.
VLDBVLDB-2014-Lu0OVW #named #pipes and filters
ScalaGiST: Scalable Generalized Search Trees for MapReduce Systems [Innovative Systems Paper] (PL, GC, BCO, HTV, SW), pp. 1797–1808.
VLDBVLDB-2014-MahmoudANAA #coordination #distributed #effectiveness #in the cloud #named #transaction
MaaT: Effective and scalable coordination of distributed transactions in the cloud (HAM, VA, FN, DA, AEA), pp. 329–340.
VLDBVLDB-2014-QuamarDL #graph #named
NScale: Neighborhood-centric Analytics on Large Graphs (AQ, AD, JL), pp. 1673–1676.
VLDBVLDB-2014-SerafiniMASRM #database #distributed #named #transaction
Accordion: Elastic Scalability for Database Systems Supporting Distributed Transactions (MS, EM, AA, KS, TR, UFM), pp. 1035–1046.
VLDBVLDB-2014-SimmenSDHLMSTX #big data #graph
Large-Scale Graph Analytics in Aster 6: Bringing Context to Big Data Discovery (DES, KS, JD, YH, SL, AM, VS, MT, YX), pp. 1405–1416.
VLDBVLDB-2014-SuhSZ #empirical #information management #named
AZDBLab: A Laboratory Information System for Large-Scale Empirical DBMS Studies (YKS, RTS, RZ), pp. 1641–1644.
VLDBVLDB-2014-SunRYD #classification #crowdsourcing #machine learning #named #using
Chimera: Large-Scale Classification using Machine Learning, Rules, and Crowdsourcing (CS, NR, FY, AD), pp. 1529–1540.
VLDBVLDB-2014-VemuriVPL #execution
Execution Primitives for Scalable Joins and Aggregations in Map Reduce (SV, MV, KP, RL), pp. 1462–1473.
VLDBVLDB-2014-WangJ #memory management
Scalable Logging through Emerging Non-Volatile Memory (TW, RJ), pp. 865–876.
VLDBVLDB-2014-YuanDZLNHWDY #distributed #mobile #named
OceanST: A Distributed Analytic System for Large-Scale Spatiotemporal Mobile Broadband Data (MY, KD, JZ, YL, BN, XH, FW, WD, QY), pp. 1561–1564.
VLDBVLDB-2014-ZhangYFW #design #implementation #interactive #realtime
Design and Implementation of a Real-Time Interactive Analytics System for Large Spatio-Temporal Data (SZ, YY, WF, MW), pp. 1754–1759.
VLDBVLDB-2015-El-KishkySWVH14 #corpus #mining #topic
Scalable Topical Phrase Mining from Text Corpora (AEK, YS, CW, CRV, JH), pp. 305–316.
VLDBVLDB-2015-FujiwaraIKO14 #image #ranking #retrieval
Scaling Manifold Ranking Based Image Retrieval (YF, GI, SK, MO), pp. 341–352.
VLDBVLDB-2015-LuCYW14 #distributed #evaluation #graph
Large-Scale Distributed Graph Computing Systems: An Experimental Evaluation (YL, JC, DY, HW), pp. 281–292.
VLDBVLDB-2015-MozafariSFJM14 #dataset #learning
Scaling Up Crowd-Sourcing to Very Large Datasets: A Case for Active Learning (BM, PS, MJF, MIJ, SM), pp. 125–136.
VLDBVLDB-2015-ZengPP14 #induction #logic programming #named
QuickFOIL: Scalable Inductive Logic Programming (QZ, JMP, DP), pp. 197–208.
VLDBVLDB-2015-ZhouGSY14 #distributed #graph #named #online #using
MOCgraph: Scalable Distributed Graph Processing Using Message Online Computing (CZ, JG, BS, JXY), pp. 377–388.
EDMEDM-2014-BakerO #detection #effectiveness
Cost-Effective, Actionable Engagement Detection at Scale (RSB, JO), pp. 345–346.
EDMEDM-2014-WixonAMBRW #detection
The Opportunities and Limitations of Scaling Up Sensor-Free Affect Detection (MW, IA, KM, WB, DR, BPW), pp. 145–152.
ITiCSEITiCSE-2014-KothiyalMI #learning #question
Think-pair-share in a large CS1 class: does learning really happen? (AK, SM, SI), pp. 51–56.
ITiCSEITiCSE-2014-RomeroTPKCAL #case study #interactive
Augmenting PBL with large public presentations: a case study in interactive graphics pedagogy (MR, BT, CP, FK, JC, JA, NL), pp. 15–20.
SANERCSMR-WCRE-2014-AutiliIT #internet #named
CHOREOS: Large scale choreographies for the future internet (MA, PI, MT), pp. 391–394.
ICPCICPC-2014-GuptaSVU #assessment #industrial #named #quality
SCQAM: a scalable structured code quality assessment method for industrial software (SG, HKS, RDV, UU), pp. 244–252.
ICSMEICSME-2014-KyriakakisC #maintenance #php #web
Maintenance Patterns of Large-Scale PHP Web Applications (PK, AC), pp. 381–390.
ICSMEICSME-2014-LandmanSV #analysis #corpus #empirical #java
Empirical Analysis of the Relationship between CC and SLOC in a Large Corpus of Java Methods (DL, AS, JJV), pp. 221–230.
ICSMEICSME-2014-MongioviMGSR #refactoring #testing
Scaling Testing of Refactoring Engines (MM, GM, RG, GS, MR), pp. 371–380.
ICSMEICSME-2014-ZhangHD #automation #parallel #simulation #tool support #validation
Tools for Enabling Automatic Validation of Large-Scale Parallel Application Simulations (DZ, GH, DD), pp. 601–604.
MSRMSR-2014-FarahTC #analysis #architecture #named #quality
OpenHub: a scalable architecture for the analysis of software quality attributes (GF, JST, DC), pp. 420–423.
SCAMSCAM-2014-KargenS #performance #slicing
Efficient Utilization of Secondary Storage for Scalable Dynamic Slicing (UK, NS), pp. 155–164.
SCAMSCAM-2014-TliliFBDH #security #verification
Scalable Security Verification of Software at Compile Time (ST, JMF, AB, BD, SH), pp. 115–124.
CIAACIAA-2014-BrzozowskiS
Large Aperiodic Semigroups (JAB, MS), pp. 124–135.
HaskellHaskell-2014-MaierST #domain-specific language #reliability
The HdpH DSLs for scalable reliable computation (PM0, RJS, PT), pp. 65–76.
ICFPICFP-2014-ChenAT #functional #programming #self
Functional programming for dynamic and large data with self-adjusting computation (YC, UAA, KT), pp. 227–240.
IFLIFL-2014-AchtenSDP #composition #interactive #programming
Task Oriented Programming with Purely Compositional Interactive Scalable Vector Graphics (PA, JS, LD, RP), p. 7.
AIIDEAIIDE-2014-PlchMOCGB
An AI System for Large Open Virtual World (TP, MM, PO, MC0, JG, CB).
CoGCIG-2014-BarrosT #game studies
Exploring a large space of small games (GABB, JT), pp. 1–2.
CoGCIG-2014-SifaBD #modelling
The Playtime Principle: Large-scale cross-games interest modeling (RS, CB, AD), pp. 1–8.
CHICHI-2014-DengRKBBF #multi
Scalable multi-label annotation (JD, OR, JK, MSB, ACB, FFL), pp. 3099–3102.
CHICHI-2014-FeltRAC
Experimenting at scale with google chrome’s SSL warning (APF, RWR, HA, SC), pp. 2667–2670.
CHICHI-2014-JotaLWJ #how
Let’s kick it: how to stop wasting the bottom third of your large screen display (RJ, PL, DW, JAJ), pp. 1411–1414.
CHICHI-2014-PedersenSH #using
Is my phone alive?: a large-scale study of shape change in handheld devices using videos (EWP, SS, KH), pp. 2579–2588.
CHICHI-2014-ShiraziHDPWS #assessment #mobile
Large-scale assessment of mobile notifications (ASS, NH, TD, MP, DW, AS), pp. 3055–3064.
CHICHI-2014-Unander-ScharinUH #interactive
The vocal chorder: empowering opera singers with a large interactive instrument (CUS, ÅUS, KH), pp. 1001–1010.
CSCWCSCW-2014-BhattacharyaGKMZGG #microblog #topic #twitter
Deep Twitter diving: exploring topical groups in microblogs at scale (PB, SG, JK, MM, MBZ, NG, KPG), pp. 197–210.
CSCWCSCW-2014-Ribes #framework #how #research
Ethnography of scaling, or, how to a fit a national research infrastructure in the room (DR), pp. 158–170.
HCIDUXU-DI-2014-FigueiredoPNMTTAF #industrial #navigation
In-Place Natural and Effortless Navigation for Large Industrial Scenarios (LSF, MP, EVN, TM, JMXNT, VT, PA, DQdF), pp. 550–561.
HCIDUXU-DP-2014-KarapantelakisG #deployment #design #effectiveness #evaluation #social
Design, Deployment and Evaluation of a Social Tool for Developing Effective Working Relationships in Large Organizations (AK, YG), pp. 49–60.
HCIDUXU-DP-2014-ZhangZLH #experience #platform #research #usability #user interface
Cross-Platform Product Usability and Large Screen User Experience: A Teleconference System U&E Research (YZ, CZ, GL, TH), pp. 469–479.
HCIHCI-TMT-2014-LatoschikF #multimodal #reuse
Engineering Variance: Software Techniques for Scalable, Customizable, and Reusable Multimodal Processing (MEL, MF), pp. 308–319.
HCIHIMI-DE-2014-ValdezSZH #clustering #network #platform #research #social #visualisation
Enhancing Interdisciplinary Cooperation by Social Platforms — Assessing the Usefulness of Bibliometric Social Network Visualization in Large-Scale Research Clusters (ACV, AKS, MZ, AH), pp. 298–309.
VISSOFTVISSOFT-2014-BlouinMBS #metamodelling #visualisation
Slicing-Based Techniques for Visualizing Large Metamodels (AB, NM, BB, HAS), pp. 25–29.
EDOCEDOC-2014-KurodaG #dependence #modelling
Model-Based IT Change Management for Large System Definitions with State-Related Dependencies (TK, ASG), pp. 170–179.
ICEISICEIS-v1-2014-ChinoGRTT #named
TrieMotif — A New and Efficient Method to Mine Frequent K-Motifs from Large Time Series (DYTC, RRdVG, LASR, CTJ, AJMT), pp. 60–69.
ICEISICEIS-v1-2014-KahkonenMS #enterprise #integration #what
What Are the Factors Affecting ERP System Integration? — Observations from a Large Manufacturing Enterprise (TK, AM, KS), pp. 5–17.
CIKMCIKM-2014-CohenDPW #sketching
Sketch-based Influence Maximization and Computation: Scaling up with Guarantees (EC, DD, TP, RFW), pp. 629–638.
CIKMCIKM-2014-KalyanakrishnanSK #on the #online
On Building Decision Trees from Large-scale Data in Applications of On-line Advertising (SK, DS, RK), pp. 669–678.
CIKMCIKM-2014-LiuXCXTY #approach #bound #linear #network #social
Influence Maximization over Large-Scale Social Networks: A Bounded Linear Approach (QL, BX, EC, HX, FT, JXY), pp. 171–180.
CIKMCIKM-2014-QianSS #database #multi #statistics
Computing Multi-Relational Sufficient Statistics for Large Databases (ZQ, OS, YLS), pp. 1249–1258.
CIKMCIKM-2014-RenTOS #how #people #web
How People Use the Web in Large Indoor Spaces (YR, MT, KO, MS), pp. 1879–1882.
CIKMCIKM-2014-SpirinHDKB #analysis #facebook #graph #network #online #people #query #social
People Search within an Online Social Network: Large Scale Analysis of Facebook Graph Search Query Logs (NVS, JH, MD, KGK, MB), pp. 1009–1018.
CIKMCIKM-2014-TongWZ #incremental #repository
Compact Auxiliary Dictionaries for Incremental Compression of Large Repositories (JT, AW, JZ), pp. 1629–1638.
CIKMCIKM-2014-TongZC0 #graph #nondeterminism #performance #probability
Efficient Probabilistic Supergraph Search Over Large Uncertain Graphs (YT, XZ, CCC, LC), pp. 809–818.
CIKMCIKM-2014-UysalBSS #approximate #database #distance #multi #performance #using
Efficient Filter Approximation Using the Earth Mover’s Distance in Very Large Multimedia Databases with Feature Signatures (MSU, CB, JS, TS), pp. 979–988.
CIKMCIKM-2014-VatsalanC #database #multi #privacy
Scalable Privacy-Preserving Record Linkage for Multiple Databases (DV, PC), pp. 1795–1798.
CIKMCIKM-2014-WangSZS #performance #semantics #similarity
Sparse Semantic Hashing for Efficient Large Scale Similarity Search (QW, BS, ZZ, LS), pp. 1899–1902.
CIKMCIKM-2014-WuF #documentation #query
Document Prioritization for Scalable Query Processing (HW, HF), pp. 1609–1618.
CIKMCIKM-2014-YangQ #image #mobile #retrieval #verification
Spatial Verification for Scalable Mobile Image Retrieval (XY, XQ), pp. 1903–1906.
CIKMCIKM-2014-YinG #distributed
Scalable Distributed Belief Propagation with Prioritized Block Updates (JY, LG), pp. 1209–1218.
CIKMCIKM-2014-YuanW0 #graph #nondeterminism #query
Pattern Match Query in a Large Uncertain Graph (YY, GW, LC), pp. 519–528.
CIKMCIKM-2014-YuanWYC #big data #database #grid #staged
Rubato DB: A Highly Scalable Staged Grid Database System for OLTP and Big Data Applications (LYY, LW, JHY, YC), pp. 1–10.
CIKMCIKM-2014-YuX #interactive #learning #network #predict #social
Learning Interactions for Social Prediction in Large-scale Networks (XY, JX), pp. 161–170.
CIKMCIKM-2014-ZhangKLCY #approach #named
NCR: A Scalable Network-Based Approach to Co-Ranking in Question-and-Answer Sites (JZ, XK, RJL, YC, PSY), pp. 709–718.
CIKMCIKM-2014-ZhangP #graph #nondeterminism
Scalable Vaccine Distribution in Large Graphs given Uncertain Data (YZ, BAP), pp. 1719–1728.
CIKMCIKM-2014-ZhengZLHZ #graph #performance
Efficient Subgraph Skyline Search Over Large Graphs (WZ, LZ, XL, LH, DZ), pp. 1529–1538.
ECIRECIR-2014-HoulsbyC #probability
A Scalable Gibbs Sampler for Probabilistic Entity Linking (NH, MC), pp. 335–346.
ECIRECIR-2014-YangPSS #case study #e-commerce #query #using
A Study of Query Term Deletion Using Large-Scale E-commerce Search Logs (BY, NP, GS, NS), pp. 235–246.
ICMLICML-c1-2014-BardenetDH #adaptation #approach #markov #monte carlo #towards
Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach (RB, AD, CCH), pp. 405–413.
ICMLICML-c1-2014-MannM #approximate #policy
Scaling Up Approximate Value Iteration with Options: Better Policies with Fewer Iterations (TAM, SM), pp. 127–135.
ICMLICML-c1-2014-Yu0KD #learning #multi
Large-scale Multi-label Learning with Missing Labels (HFY, PJ, PK, ISD), pp. 593–601.
ICMLICML-c2-2014-AgarwalKKSV #multi #predict
Least Squares Revisited: Scalable Approaches for Multi-class Prediction (AA, SMK, NK, LS, GV), pp. 541–549.
ICMLICML-c2-2014-BratieresQNG #graph #grid #predict #process
Scalable Gaussian Process Structured Prediction for Grid Factor Graph Applications (SB, NQ, SN, ZG), pp. 334–342.
ICMLICML-c2-2014-ChakrabartiFCM #multi #network
Joint Inference of Multiple Label Types in Large Networks (DC, SF, JC, SAM), pp. 874–882.
ICMLICML-c2-2014-Hernandez-LobatoHG #matrix #modelling #probability
Stochastic Inference for Scalable Probabilistic Modeling of Binary Matrices (JMHL, NH, ZG), pp. 379–387.
ICMLICML-c2-2014-HuangCG #estimation
Scalable Semidefinite Relaxation for Maximum A Posterior Estimation (QXH, YC, LJG), pp. 64–72.
ICMLICML-c2-2014-KimO #process
Hierarchical Dirichlet Scaling Process (DK, AHO), pp. 973–981.
ICMLICML-c2-2014-MalekAB #linear #markov #problem #programming
Linear Programming for Large-Scale Markov Decision Problems (AM, YAY, PLB), pp. 496–504.
ICMLICML-c2-2014-MinskerSLD #robust
Scalable and Robust Bayesian Inference via the Median Posterior (SM, SS, LL, DBD), pp. 1656–1664.
ICMLICML-c2-2014-RaiWGCDC #composition #multi #rank
Scalable Bayesian Low-Rank Decomposition of Incomplete Multiway Tensors (PR, YW, SG, GC, DBD, LC), pp. 1800–1808.
ICMLICML-c2-2014-Sohl-DicksteinPG #optimisation #performance #probability
Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods (JSD, BP, SG), pp. 604–612.
ICMLICML-c2-2014-TamarMX #approximate #robust #using
Scaling Up Robust MDPs using Function Approximation (AT, SM, HX), pp. 181–189.
ICMLICML-c2-2014-TuZWQ #analysis
Making Fisher Discriminant Analysis Scalable (BT, ZZ, SW, HQ), pp. 964–972.
ICMLICML-c2-2014-WangLYFWY #algorithm #modelling #parallel
A Highly Scalable Parallel Algorithm for Isotropic Total Variation Models (JW, QL, SY, WF, PW, JY), pp. 235–243.
ICMLICML-c2-2014-WangWY #reduction
Scaling SVM and Least Absolute Deviations via Exact Data Reduction (JW, PW, JY), pp. 523–531.
ICPRICPR-2014-AliNB #classification #constraints #image #probability
Boosting Stochastic Newton with Entropy Constraint for Large-Scale Image Classification (WBHA, RN, MB), pp. 232–237.
ICPRICPR-2014-BlondelFU #multi
Large-Scale Multiclass Support Vector Machine Training via Euclidean Projection onto the Simplex (MB, AF, NU), pp. 1289–1294.
ICPRICPR-2014-OskarssonAT #graph #multi
Prime Rigid Graphs and Multidimensional Scaling with Missing Data (MO, , AT), pp. 750–755.
ICPRICPR-2014-PandaKC #graph #random #summary #using #video
Scalable Video Summarization Using Skeleton Graph and Random Walk (RP, SKK, ASC), pp. 3481–3486.
ICPRICPR-2014-SalmonW #on the #recognition
On the Scalability of Graphic Symbol Recognition (JPS, LW), pp. 533–537.
ICPRICPR-2014-SantoshWAT #detection #image
Scalable Arrow Detection in Biomedical Images (KCS, LW, SA, GRT), pp. 3257–3262.
ICPRICPR-2014-ScottEMFA #pattern matching
GPU-Based PostgreSQL Extensions for Scalable High-Throughput Pattern Matching (GJS, ME, KM, ZF, DTA), pp. 1880–1885.
ICPRICPR-2014-SinghKZ #detection #difference #image #markov #multi
A Multilayer Markovian Model for Change Detection in Aerial Image Pairs with Large Time Differences (PS, ZK, JZ), pp. 924–929.
ICPRICPR-2014-WuK #geometry #image #invariant #retrieval
Image Retrieval Based on Anisotropic Scaling and Shearing Invariant Geometric Coherence (XW, KK), pp. 3951–3956.
ICPRICPR-2014-XingY #categorisation #image #parametricity #representation
Large Scale Image Categorization in Sparse Nonparametric Bayesian Representation (SX, NHCY), pp. 1365–1370.
KDDKDD-2014-AnagnostopoulosT #big data
Scaling out big data missing value imputations: pythia vs. godzilla (CA, PT), pp. 651–660.
KDDKDD-2014-BenderskyPHJL #retrieval #video
Up next: retrieval methods for large scale related video suggestion (MB, LGP, JJH, VJ, DL), pp. 1769–1778.
KDDKDD-2014-Bengio #learning
Scaling up deep learning (YB), p. 1966.
KDDKDD-2014-BensonRS #learning #multi #network
Learning multifractal structure in large networks (ARB, CR, SS), pp. 1326–1335.
KDDKDD-2014-ChenCW #classification #performance
Fast flux discriminant for large-scale sparse nonlinear classification (WC, YC, KQW), pp. 621–630.
KDDKDD-2014-ChiaS #mining #predict
Scalable noise mining in long-term electrocardiographic time-series to predict death following heart attacks (CCC, ZS), pp. 125–134.
KDDKDD-2014-DalessandroCRPWP #learning #online
Scalable hands-free transfer learning for online advertising (BD, DC, TR, CP, MHW, FJP), pp. 1573–1582.
KDDKDD-2014-HerodotouDBOF #locality #network #realtime
Scalable near real-time failure localization of data center networks (HH, BD, SB, GO, PF), pp. 1689–1698.
KDDKDD-2014-HuHA #e-commerce #modelling #social
Style in the long tail: discovering unique interests with latent variable models in large scale social E-commerce (DJH, RH, JA), pp. 1640–1649.
KDDKDD-2014-JagadeeshPBDS #image #recommendation #visual notation
Large scale visual recommendations from street fashion images (VJ, RP, AB, WD, NS), pp. 1925–1934.
KDDKDD-2014-JiangCBFY #behaviour #graph #named
CatchSync: catching synchronized behavior in large directed graphs (MJ, PC, AB, CF, SY), pp. 941–950.
KDDKDD-2014-KhalilDS #network #optimisation
Scalable diffusion-aware optimization of network topology (EBK, BND, LS), pp. 1226–1235.
KDDKDD-2014-LeeLTS #modelling #recommendation
Modeling impression discounting in large-scale recommender systems (PL, LVSL, MT, SS), pp. 1837–1846.
KDDKDD-2014-LinRRYRF #clustering #enterprise
Unveiling clusters of events for alert and incident management in large-scale enterprise it (DL, RR, VR, JY, RR, JF), pp. 1630–1639.
KDDKDD-2014-LofgrenBGC #estimation #graph #named #personalisation #rank
FAST-PPR: scaling personalized pagerank estimation for large graphs (PL, SB, AG, SC), pp. 1436–1445.
KDDKDD-2014-PerozziASM #clustering #detection #graph
Focused clustering and outlier detection in large attributed graphs (BP, LA, PIS, EM), pp. 1346–1355.
KDDKDD-2014-PurohitPKZS #network #performance
Fast influence-based coarsening for large networks (MP, BAP, CK, YZ, VSS), pp. 1296–1305.
KDDKDD-2014-RadosavljevikP #interface #modelling #predict
Large scale predictive modeling for micro-simulation of 3G air interface load (DR, PvdP), pp. 1620–1629.
KDDKDD-2014-SchubertWK #detection #named #topic
SigniTrend: scalable detection of emerging topics in textual streams by hashed significance thresholds (ES, MW, HPK), pp. 871–880.
KDDKDD-2014-SongZSS #behaviour #predict
Prediction of human emergency behavior and their mobility following large-scale disaster (XS, QZ, YS, RS), pp. 5–14.
KDDKDD-2014-SpasojevicYRB #multi #named #network #social #topic
LASTA: large scale topic assignment on multiple social networks (NS, JY, AR, PB), pp. 1809–1818.
KDDKDD-2014-TamersoyRC #detection #graph #mining
Guilt by association: large scale malware detection by mining file-relation graphs (AT, KAR, DHC), pp. 1524–1533.
KDDKDD-2014-TangL #probability
Scalable histograms on large probabilistic data (MT, FL), pp. 631–640.
KDDKDD-2014-WangNH #adaptation #induction #learning
Large-scale adaptive semi-supervised learning via unified inductive and transductive model (DW, FN, HH), pp. 482–491.
KDDKDD-2014-WeiSZL0
Scalable heterogeneous translated hashing (YW, YS, YZ, BL, QY), pp. 791–800.
KDDKDD-2014-YangKSG #modelling #topic #twitter
Large-scale high-precision topic modeling on twitter (SHY, AK, AS, PG), pp. 1907–1916.
KDDKDD-2014-ZhangZ
Large margin distribution machine (TZ, ZHZ), pp. 313–322.
KDDKDD-2014-ZongWSSCHY #mining #towards
Towards scalable critical alert mining (BZ, YW, JS, AKS, , JH, XY), pp. 1057–1066.
KDIRKDIR-2014-HubwieserM #education #mining #set
Competency Mining in Large Data Sets — Preparing Large Scale Investigations in Computer Science Education (PH, AM), pp. 315–322.
KDIRKDIR-2014-PassonneauRX #detection #mining
Company Mention Detection for Large Scale Text Mining (RJP, TR, BX), pp. 512–520.
MLDMMLDM-2014-AnandWA #information management
A Method of Crowd-Sourced Information Extraction From Large Data Files (IMA, AW, PA), pp. 431–436.
RecSysRecSys-2014-BastianHVSSKUL #topic
LinkedIn skills: large-scale topic extraction and inference (MB, MH, WV, SS, PS, HJK, SU, CL), pp. 1–8.
RecSysRecSys-2014-ZhangOFL #modelling #network #social
Scalable audience targeted models for brand advertising on social networks (KZ, AMO, SF, HL), pp. 341–344.
SIGIRSIGIR-2014-BabbarPGA #approach #classification #distributed #ranking
Re-ranking approach to classification in large-scale power-law distributed category systems (RB, IP, ÉG, MRA), pp. 1059–1062.
SIGIRSIGIR-2014-CambazogluB #challenge #performance #web
Scalability and efficiency challenges in large-scale web search engines (BBC, RABY), p. 1285.
SIGIRSIGIR-2014-DamH #topic #verification
Large-scale author verification: temporal and topical influences (MvD, CH), pp. 1039–1042.
SIGIRSIGIR-2014-GiangrecoKS #database #information retrieval #multi #named #query
ADAM: a system for jointly providing ir and database queries in large-scale multimedia retrieval (IG, IAK, HS), pp. 1257–1258.
SIGIRSIGIR-2014-LengCL #image #learning #random #retrieval
Random subspace for binary codes learning in large scale image retrieval (CL, JC, HL), pp. 1031–1034.
SIGIRSIGIR-2014-Zhang #graph #rdf
Graph-based large scale RDF data compression (WEZ), p. 1276.
BXBX-2014-BeineHWC #bidirectional #case study #database #evolution
Bidirectional Transformations in Database Evolution: A Case Study “At Scale” (MB, NH, JHW, AC), pp. 100–107.
ECMFAECMFA-2014-BarmpisK #modelling #query #towards
Towards Scalable Querying of Large-Scale Models (KB, DSK), pp. 35–50.
ECMFAECMFA-2014-BenelallamGSTL #emf #modelling #persistent
Neo4EMF, A Scalable Persistence Layer for EMF Models (AB, AG, GS, MT, DL), pp. 230–241.
MODELSMoDELS-2014-BousseCB14a
Scalable Armies of Model Clones through Data Sharing (EB, BC, BB), pp. 286–301.
MODELSMoDELS-2014-ShahWKRPB #benchmark #framework #metric #persistent
A Framework to Benchmark NoSQL Data Stores for Large-Scale Model Persistence (SMS, RW, DSK, LMR, RFP, KB), pp. 586–601.
PLDIPLDI-2014-MitraLABSG #analysis #debugging #parallel
Accurate application progress analysis for large-scale parallel debugging (SM, IL, DHA, SB, MS, TG), p. 23.
RERE-2014-BreauxS #policy #privacy #requirements
Scaling requirements extraction to the crowd: Experiments with privacy policies (TDB, FS), pp. 163–172.
REFSQREFSQ-2014-AbeleinP #communication #developer
State of Practice of User-Developer Communication in Large-Scale IT Projects — Results of an Expert Interview Series (UA, BP), pp. 95–111.
SACSAC-PL-J-2013-MaierST14 #design #reliability #symbolic computation
Reliable scalable symbolic computation: The design of SymGridPar2 (PM, RJS, PWT), pp. 19–35.
ASEASE-2014-GuoZORCAA #combinator #optimisation #parallel
Scaling exact multi-objective combinatorial optimization by parallelization (JG, EZ, RO, DR, KC, SA, JMA), pp. 409–420.
ASEASE-2014-MatinnejadNBB #configuration management #modelling #testing #using
MiL testing of highly configurable continuous controllers: scalable search using surrogate models (RM, SN, LCB, TB), pp. 163–174.
FSEFSE-2014-EslamimehrP #concurrent #detection #named #source code
Sherlock: scalable deadlock detection for concurrent programs (ME, JP), pp. 353–365.
FSEFSE-2014-LerchHBM #analysis #named #performance
FlowTwist: efficient context-sensitive inside-out taint analysis for large codebases (JL, BH, EB, MM), pp. 98–108.
FSEFSE-2014-MileaJK #abstraction #detection #refactoring
Vector abstraction and concretization for scalable detection of refactorings (NAM, LJ, SCK), pp. 86–97.
FSEFSE-2014-Nguyen0NR #api #corpus #mining
Mining preconditions of APIs in large-scale code corpus (HAN, RD, TNN, HR), pp. 166–177.
FSEFSE-2014-RayPFD #case study #git #programming language #quality
A large scale study of programming languages and code quality in github (BR, DP, VF, PTD), pp. 155–165.
FSEFSE-2014-SchultisEL #architecture #case study #challenge #ecosystem #industrial
Architecture challenges for internal software ecosystems: a large-scale industry case study (KBS, CE, DL), pp. 542–552.
ICSEICSE-2014-ChenLZ #android #detection
Achieving accuracy and scalability simultaneously in detecting application clones on Android markets (KC, PL, YZ), pp. 175–186.
ICSEICSE-2014-WagstromD #development
Does latitude hurt while longitude kills? geographical and temporal separation in a large scale software development project (PW, SD), pp. 199–210.
SACSAC-2014-ChenCWD #recommendation
Instant expert hunting: building an answerer recommender system for a large scale Q&A website (TC, JC, HW, YD), pp. 260–265.
SACSAC-2014-FanC #approximate #framework #network #social
An approximate framework for scaling social influence computation in large networks (YCF, HC), pp. 610–615.
SACSAC-2014-HamerW #platform
Large scale processing of landsat data on various software platforms (GH, JW), pp. 1547–1549.
SACSAC-2014-HusemannR #multi #predict #video
Introduction of a multi-layer predictive search strategy for scalable video coding (RH, VR), pp. 985–986.
SACSAC-2014-KarumanchiS #case study #web #web service
In the wild: a large scale study of web services vulnerabilities (SK, ACS), pp. 1239–1246.
SACSAC-2014-KleffmannBHG #automation #interactive #navigation #sketching #version control
Automated versioning and temporal navigation for model sketches on large interactive displays (MK, MB, EH, VG), pp. 161–168.
SACSAC-2014-MesmoudiH #declarative #framework #query
A test framework for large scale declarative queries: preliminary results (AM, MSH), pp. 858–859.
SACSAC-2014-MoonKSP #image #novel
A novel double linear-cubic convolution interpolation for digital image scaling (HMM, KRK, JS, SBP), pp. 1733–1734.
SACSAC-2014-ShoshitaishviliIDV #analysis #security #trade-off
Do you feel lucky?: a large-scale analysis of risk-rewards trade-offs in cyber security (YS, LI, AD, GV), pp. 1649–1656.
SACSAC-2014-YangDZYZN #visualisation
Visualizing large hierarchies with drawer trees (YY, ND, SZ, ZY, KZ, QVN), pp. 951–956.
SACSAC-2014-ZeilemakerSP #network
Large-scale message synchronization in challenged networks (NZ, BS, JAP), pp. 481–488.
GPCEGPCE-2014-RuprechtHL #automation #feature model #product line
Automatic feature selection in large-scale system-software product lines (AR, BH, DL), pp. 39–48.
ASPLOSASPLOS-2014-Gehlhaar #architecture #future of
Neuromorphic processing: a new frontier in scaling computer architecture (JG), pp. 317–318.
ASPLOSASPLOS-2014-WaterlandAAAS #automation #named
ASC: automatically scalable computation (AW, EA, RPA, JA, MIS), pp. 575–590.
CASECASE-2014-MurookaNNKOI #learning #physics
Manipulation strategy learning for carrying large objects based on mapping from object physical property to object manipulation action in virtual environment (MM, SN, SN, YK, KO, MI), pp. 263–270.
CASECASE-2014-XuJGX #energy
A new method to solve large-scale building energy management for energy saving (ZX, QSJ, XG, XX), pp. 940–945.
CGOCGO-2014-HongSWO #domain-specific language #graph
Simplifying Scalable Graph Processing with a Domain-Specific Language (SH, SS, JW, KO), p. 208.
CGOCGO-2014-JimboreanKSBK #approach #compilation #hardware
Fix the code. Don’t tweak the hardware: A new compiler approach to Voltage-Frequency scaling (AJ, KK, VS, DBS, SK), p. 262.
CGOCGO-2014-ZengR0AJ0 #encoding #named #precise
DeltaPath: Precise and Scalable Calling Context Encoding (QZ, JR, HZ, NA, GJ, PL), p. 109.
DACDAC-2014-ApostolopoulouDES #matrix #simulation
Selective Inversion of Inductance Matrix for Large-Scale Sparse RLC Simulation (IA, KD, NEE, GIS), p. 6.
DACDAC-2014-ChakrabortyMV #generative #satisfiability
Balancing Scalability and Uniformity in SAT Witness Generator (SC, KSM, MYV), p. 6.
DACDAC-2014-ChenWLWSC #design #monitoring
Critical Path Monitor Enabled Dynamic Voltage Scaling for Graceful Degradation in Sub-Threshold Designs (YGC, TW, KYL, WYW, YS, SCC), p. 6.
DACDAC-2014-GottschoBDNG #capacity #energy #fault tolerance
Power / Capacity Scaling: Energy Savings With Simple Fault-Tolerant Caches (MG, AB, ND, AN, PG), p. 6.
DACDAC-2014-LiangC #analysis #clustering #named #network #probability #reduction #smarttech
ClusRed: Clustering and Network Reduction Based Probabilistic Optimal Power Flow Analysis for Large-Scale Smart Grids (YL, DC), p. 6.
DACDAC-2014-MunawarS #functional #modelling
Scalable Co-Simulation of Functional Models With Accurate Event Exchange (AM, SS), p. 6.
DACDAC-2014-NaeemiCKPIR #generative
BEOL Scaling Limits and Next Generation Technology Prospects (AN, AC, VK, CP, RMI, SR), p. 6.
DACDAC-2014-PrussKE #abstraction #equivalence #using #verification
Equivalence Verification of Large Galois Field Arithmetic Circuits using Word-Level Abstraction via Gröbner Bases (TP, PK, FE), p. 6.
DACDAC-2014-XueQBYT #analysis #framework #manycore #platform
Disease Diagnosis-on-a-Chip: Large Scale Networks-on-Chip based Multicore Platform for Protein Folding Analysis (YX, ZQ, PB, FY, CYT), p. 6.
DACDAC-2014-YangHCLRX #behaviour #certification #framework #synthesis
Scalable Certification Framework for Behavioral Synthesis Front-End (ZY, KH, KC, LL, SR, FX), p. 6.
DATEDATE-2014-BortolottiBWRB #architecture #hybrid #manycore #memory management #power management
Hybrid memory architecture for voltage scaling in ultra-low power multi-core biomedical processors (DB, AB, CW, DR, LB), pp. 1–6.
DATEDATE-2014-Braak #adaptation #embedded #using
Using guided local search for adaptive resource reservation in large-scale embedded systems (TDtB), pp. 1–4.
DATEDATE-2014-BurgioDMCB #clustering #hardware #programmable
A tightly-coupled hardware controller to improve scalability and programmability of shared-memory heterogeneous clusters (PB, RD, AM, PC, LB), pp. 1–4.
DATEDATE-2014-DoanJP #flexibility #implementation #multi #using
Flexible and scalable implementation of H.264/AVC encoder for multiple resolutions using ASIPs (HCD, HJ, SP), pp. 1–6.
DATEDATE-2014-GholipourCSC #modelling
Highly accurate SPICE-compatible modeling for single- and double-gate GNRFETs with studies on technology scaling (MG, YYC, AS, DC), pp. 1–6.
DATEDATE-2014-IannopolloNTS #contract #design #refinement
Library-based scalable refinement checking for contract-based design (AI, PN, ST, ALSV), pp. 1–6.
DATEDATE-2014-JoostenS #communication #liveness #verification
Scalable liveness verification for communication fabrics (SJCJ, JS), pp. 1–6.
DATEDATE-2014-LagraaTP #data mining #mining #simulation #using
Scalability bottlenecks discovery in MPSoC platforms using data mining on simulation traces (SL, AT, FP), pp. 1–6.
DATEDATE-2014-PuEMG #logic #power management #synthesis
Logic synthesis of low-power ICs with ultra-wide voltage and frequency scaling (YP, JDE, MM, JPdG), pp. 1–2.
DATEDATE-2014-RanaC #analysis #named #reduction #simulation
SSFB: A highly-efficient and scalable simulation reduction technique for SRAM yield analysis (MR, RC), pp. 1–6.
DATEDATE-2014-ShenQ #quality
Contention aware frequency scaling on CMPs with guaranteed quality of service (HS, QQ), pp. 1–6.
DATEDATE-2014-YuSH #adaptation
Thermal-aware frequency scaling for adaptive workloads on heterogeneous MPSoCs (HY, RS, YH), pp. 1–6.
HPCAHPCA-2014-DemetriadesC #manycore
Stash directory: A scalable directory for many-core coherence (SD, SC), pp. 177–188.
HPCAHPCA-2014-ElTantawyMOA #architecture #control flow #gpu #multi #performance
A scalable multi-path microarchitecture for efficient GPU control flow (AE, JWM, MO, TMA), pp. 248–259.
HPCAHPCA-2014-ZhangBES #design #named #protocol #verification
PVCoherence: Designing flat coherence protocols for scalable verification (MZ, JDB, JE, DJS), pp. 392–403.
HPDCHPDC-2014-AlamKW #distributed #query
A scalable distributed skip list for range queries (SA, HK, AW), pp. 315–318.
HPDCHPDC-2014-TangMEL0G #manycore
Data filtering for scalable high-dimensional k-NN search on multicore systems (XT, SM, DME, KCL, ZH, MG), pp. 305–310.
HPDCHPDC-2014-XiangMA #matrix #pipes and filters #using
Scalable matrix inversion using MapReduce (JX, HM, AA), pp. 177–190.
HPDCHPDC-2014-YinWFZZ #analysis #middleware #named #visualisation
SLAM: scalable locality-aware middleware for I/O in scientific analysis and visualization (JY, JW, WcF, XZ, JZ), pp. 257–260.
ISMMISMM-2014-Joisha #performance
Sticky tries: fast insertions, fast lookups, no deletions for large key universes (PGJ), pp. 35–46.
OSDIOSDI-2014-BoutinELSZQWZ #coordination #named #scheduling
Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing (EB, JE, WL, BS, JZ, ZQ, MW, LZ), pp. 285–300.
OSDIOSDI-2014-ChilimbiSAK #learning #performance
Project Adam: Building an Efficient and Scalable Deep Learning Training System (TMC, YS, JA, KK), pp. 571–582.
OSDIOSDI-2014-ChowMFPW #analysis #internet #performance
The Mystery Machine: End-to-end Performance Analysis of Large-scale Internet Services (MC, DM, JF, DP, TFW), pp. 217–231.
OSDIOSDI-2014-LiAPSAJLSS #distributed #machine learning #parametricity
Scaling Distributed Machine Learning with the Parameter Server (ML, DGA, JWP, AJS, AA, VJ, JL, EJS, BYS), pp. 583–598.
PDPPDP-2014-BuiFVHHLPH #parallel #using
Scalable Parallel I/O on a Blue Gene/Q Supercomputer Using Compression, Topology-Aware Data Aggregation, and Subfiling (HB, HF, VV, SH, KH, JL, MEP, KH), pp. 107–111.
PDPPDP-2014-DalKT #graph #performance #using
Fast Diameter Computation of Large Sparse Graphs Using GPUs (GHD, WAK, FWT), pp. 632–639.
PDPPDP-2014-MillsZMFG #energy
Energy Consumption of Resilience Mechanisms in Large Scale Systems (BNM, TZ, RGM, KBF, REG), pp. 528–535.
PDPPDP-2014-PalazzoSG #case study #monitoring #video
Large Scale Data Processing in Ecology: A Case Study on Long-Term Underwater Video Monitoring (SP, CS, DG), pp. 312–316.
TACASTACAS-2014-MalerM #learning #regular expression
Learning Regular Languages over Large Alphabets (OM, IEM), pp. 485–499.
CAVCAV-2014-LeeS #abstraction #approximate #bound #reachability #verification
Unbounded Scalable Verification Based on Approximate Property-Directed Reachability and Datapath Abstraction (SL, KAS), pp. 849–865.
CAVCAV-2014-SinnZV #bound #complexity #static analysis
A Simple and Scalable Static Analysis for Bound Analysis and Amortized Complexity Analysis (MS, FZ, HV), pp. 745–761.
IJCARIJCAR-2014-PeaseS #information management #ontology
Knowledge Engineering for Large Ontologies with Sigma KEE 3.0 (AP, SS), pp. 519–525.
ISSTAISSTA-2014-Chen #constraints #program analysis #proving #reuse
Reusing constraint proofs for scalable program analysis (MC), pp. 449–452.
ISSTAISSTA-2014-Just #analysis #framework #java #mutation testing #performance
The major mutation framework: efficient and scalable mutation analysis for Java (RJ), pp. 433–436.
ISSTAISSTA-2014-MileaJK #detection #refactoring
Scalable detection of missed cross-function refactorings (NAM, LJ, SCK), pp. 138–148.
VMCAIVMCAI-2014-Fu #abstract domain #analysis #java #points-to
Modularly Combining Numeric Abstract Domains with Points-to Analysis, and a Scalable Static Numeric Analyzer for Java (ZF), pp. 282–301.
ICDARICDAR-2013-DuAD #multi #using
Large-Scale Signature Matching Using Multi-stage Hashing (XD, WAA, DSD), pp. 976–980.
ICDARICDAR-2013-GotoIFU #graph #set #using
Analyzing the Distribution of a Large-Scale Character Pattern Set Using Relative Neighborhood Graph (MG, RI, YF, SU), pp. 3–7.
JCDLJCDL-2013-LinWGXM #recognition
LSH-based large scale chinese calligraphic character recognition (YL, JW, PG, YX, TM), pp. 323–330.
JCDLJCDL-2013-RahnemoonfarP #automation #documentation #evaluation #performance
Automatic performance evaluation of dewarping methods in large scale digitization of historical documents (MR, BP), pp. 331–334.
JCDLJCDL-2013-SchonebergSH #distributed #process #workflow
A scalable, distributed and dynamic workflow system for digitization processes (HS, HGS, WH), pp. 359–362.
SIGMODSIGMOD-2013-AkibaIY #distance #network #performance #query
Fast exact shortest-path distance queries on large networks by pruned landmark labeling (TA, YI, YY), pp. 349–360.
SIGMODSIGMOD-2013-AnanthanarayananBDGJQRRSV #data type #fault tolerance #named
Photon: fault-tolerant and scalable joining of continuous data streams (RA, VB, SD, AG, HJ, TQ, AR, DR, MS, SV), pp. 577–588.
SIGMODSIGMOD-2013-ChengHWF #graph #named #query #reachability
TF-Label: a topological-folding labeling scheme for reachability querying in a large graph (JC, SH, HW, AWCF), pp. 193–204.
SIGMODSIGMOD-2013-HanLL #database #graph #morphism #named #robust #towards
Turboiso: towards ultrafast and robust subgraph isomorphism search in large graph databases (WSH, JL, JHL), pp. 337–348.
SIGMODSIGMOD-2013-HungBTCZ #named #network #query #visual notation
QUBLE: blending visual subgraph query formulation with query processing on large networks (HHH, SSB, BQT, BC, SZ), pp. 1097–1100.
SIGMODSIGMOD-2013-JungHFHY #multi
A scalable lock manager for multicores (HJ, HH, ADF, GH, HYY), pp. 73–84.
SIGMODSIGMOD-2013-KhuranaD #named #network
HiNGE: enabling temporal network analytics at scale (UK, AD), pp. 1089–1092.
SIGMODSIGMOD-2013-MiliarakiBGZ #mining #sequence
Mind the gap: large-scale frequent sequence mining (IM, KB, RG, SZ), pp. 797–808.
SIGMODSIGMOD-2013-SongYYHS #data flow #retrieval #semistructured data
Inter-media hashing for large-scale retrieval from heterogeneous data sources (JS, YY, YY, ZH, HTS), pp. 785–796.
SIGMODSIGMOD-2013-TsytsarauAP #correlation #performance #sentiment
Efficient sentiment correlation for large-scale demographics (MT, SAY, TP), pp. 253–264.
SIGMODSIGMOD-2013-XinRZFSS #named #sql
Shark: SQL and rich analytics at scale (RSX, JR, MZ, MJF, SS, IS), pp. 13–24.
SIGMODSIGMOD-2013-YakoutBE #automation #bound
Don’t be SCAREd: use SCalable Automatic REpairing with maximal likelihood and bounded changes (MY, LBE, AKE), pp. 553–564.
SIGMODSIGMOD-2013-ZhangR #case study #towards
Towards high-throughput gibbs sampling at scale: a study across storage managers (CZ, CR), pp. 397–408.
SIGMODSIGMOD-2013-ZhengJPL #kernel #performance #quality
Quality and efficiency for kernel density estimates in large data (YZ, JJ, JMP, FL), pp. 433–444.
TPDLTPDL-2013-FedoryszakTB #using
Large Scale Citation Matching Using Apache Hadoop (MF, DT, LB), pp. 362–365.
TPDLTPDL-2013-HallC #library #using #visualisation
Exploring Large Digital Library Collections Using a Map-Based Visualisation (MMH, PDC), pp. 216–227.
TPDLTPDL-2013-RuedaDHCMW #case study #library
Providing Meaningful Information in a Large Scale Digital Library — A Case Study (LR, SDT, PH, SC, SM, SW), pp. 279–284.
TPDLTPDL-2013-WangICKAW
Hierarchical Structuring of Cultural Heritage Objects within Large Aggregations (SW, AI, VC, RK, AA, TvdW), pp. 247–259.
VLDBVLDB-2013-AilamakiJPT #towards #transaction
Toward Scalable Transaction Processing (AA, RJ, IP, PT), pp. 1192–1193.
VLDBVLDB-2013-BediniEV #big data #case study #framework #platform
The Trento Big Data Platform for Public Administration and Large Companies: Use cases and Opportunities (IB, BE, YV), pp. 1166–1167.
VLDBVLDB-2013-BellareCMMRS #framework #knowledge base #multitenancy #named #platform #synthesis
WOO: A Scalable and Multi-tenant Platform for Continuous Knowledge Base Synthesis (KB, CC, AM, PM, MR, AS), pp. 1114–1125.
VLDBVLDB-2013-ChandramouliGQ #big data #in the cloud
Scalable Progressive Analytics on Big Data in the Cloud (BC, JG, AQ), pp. 1726–1737.
VLDBVLDB-2013-DengJLLY #concept #knowledge base #using #web
Scalable Column Concept Determination for Web Tables Using Large Knowledge Bases (DD, YJ, GL, JL, CY), pp. 1606–1617.
VLDBVLDB-2013-Dey #transaction
Scalable Transactions across Heterogeneous NoSQL Key-Value Data Stores (AD), pp. 1434–1439.
VLDBVLDB-2013-FuKR #on the
On Scaling Up Sensitive Data Auditing (YF, RK, RR), pp. 313–324.
VLDBVLDB-2013-HendawiBM #framework #named #network #predict #query
iRoad: A Framework For Scalable Predictive Query Processing On Road Networks (AMH, JB, MFM), pp. 1262–1265.
VLDBVLDB-2013-HuangCLQY #network
Top-K Structural Diversity Search in Large Networks (XH, HC, RHL, LQ, JXY), pp. 1618–1629.
VLDBVLDB-2013-JinW #performance #reachability
Simple, Fast, and Scalable Reachability Oracle (RJ, GW), pp. 1978–1989.
VLDBVLDB-2013-KumarGDL #named
Hone: “Scaling Down” Hadoop on Shared-Memory Systems (KAK, JG, AD, JL), pp. 1354–1357.
VLDBVLDB-2013-LeeL #clustering #graph #query #rdf #semantics
Scaling Queries over Big RDF Graphs with Semantic Hash Partitioning (KL, LL), pp. 1894–1905.
VLDBVLDB-2013-ManshadiAGKMS #algorithm #distributed
A Distributed Algorithm for Large-Scale Generalized Matching (FMM, BA, RG, RK, JM, MS), pp. 613–624.
VLDBVLDB-2013-MansourEKAA #named #parallel #sequence
RACE: A Scalable and Elastic Parallel System for Discovering Repeats in Very Long Sequences (EM, AER, PK, AA, AA), pp. 865–876.
VLDBVLDB-2013-OgdenTP #automaton #parallel #query #transducer #using #xml
Scalable XML Query Processing using Parallel Pushdown Transducers (PO, DBT, PP), pp. 1738–1749.
VLDBVLDB-2013-PopescuBEA #named #predict #runtime #towards
PREDIcT: Towards Predicting the Runtime of Large Scale Iterative Analytics (ADP, AB, VE, AA), pp. 1678–1689.
VLDBVLDB-2013-QiaoQCYT #graph #keyword
Top-K Nearest Keyword Search on Large Graphs (MQ, LQ, HC, JXY, WT), pp. 901–912.
VLDBVLDB-2013-Rendle #relational
Scaling Factorization Machines to Relational Data (SR), pp. 337–348.
VLDBVLDB-2013-SeoPSL #analysis #distributed #graph
Distributed SociaLite: A Datalog-Based Language for Large-Scale Graph Analysis (JS, JP, JS, MSL), pp. 1906–1917.
VLDBVLDB-2013-ShuteVSHWROLMECRSA #database #distributed #named #sql
F1: A Distributed SQL Database That Scales (JS, RV, BS, BH, CW, ER, MO, KL, DM, SE, JC, IR, TS, HA), pp. 1068–1079.
VLDBVLDB-2013-WandeltSBL #named #similarity
RCSI: Scalable similarity search in thousand(s) of genomes (SW, JS, MB, UL), pp. 1534–1545.
VLDBVLDB-2013-YuanLWJZL #named #performance #rdf
TripleBit: a Fast and Compact System for Large Scale RDF Data (PY, PL, BW, HJ, WZ, LL), pp. 517–528.
VLDBVLDB-2013-ZhengZF0Z #graph #performance #similarity
Efficient SimRank-based Similarity Join Over Large Graphs (WZ, LZ, YF, LC, DZ), pp. 493–504.
VLDBVLDB-2014-HeiseQAJN13
Scalable Discovery of Unique Column Combinations (AH, JAQR, ZA, AJ, FN), pp. 301–312.
VLDBVLDB-2014-KaranasosKM13 #capacity #constraints #named
Delta: Scalable Data Dissemination under Capacity Constraints (KK, AK, IM), pp. 217–228.
VLDBVLDB-2014-TangUCMC13 #distance #similarity
Earth Mover’s Distance based Similarity Search at Scale (YT, LHU, YC, NM, RC), pp. 313–324.
ITiCSEITiCSE-2013-GorlatovaSKKZ #learning #research
Project-based learning within a large-scale interdisciplinary research effort (MG, JS, PRK, IK, GZ), pp. 207–212.
ICPCICPC-2013-UddinRS #clone detection #detection #named #performance
SimCad: An extensible and faster clone detection tool for large scale software systems (MSU, CKR, KAS), pp. 236–238.
ICSMEICSM-2013-MeqdadiACM #adaptation #comprehension #towards #version control
Towards Understanding Large-Scale Adaptive Changes from Version Histories (OM, NA, MLC, JIM), pp. 416–419.
ICSMEICSM-2013-MillerCW #developer #embedded #legacy #maintenance
Assuming Software Maintenance of a Large, Embedded Legacy System from the Original Developer (WLM, LBC, BLW), pp. 552–555.
ICSMEICSM-2013-RosePFP #framework #platform #probability #search-based #testing #towards
Towards a Scalable Cloud Platform for Search-Based Probabilistic Testing (LMR, SMP, RF, RFP), pp. 480–483.
ICSMEICSM-2013-VenkataramaniABM #analysis #repository #semantics
Latent Co-development Analysis Based Semantic Search for Large Code Repositories (RV, AMA, VDB, BM), pp. 372–375.
ICSMEICSM-2013-WrightJKCW #automation #refactoring #using
Large-Scale Automated Refactoring Using ClangMR (HKW, DJ, MK, CC, ZW), pp. 548–551.
SCAMSCAM-2013-MendezBM #api #empirical #object-oriented
Empirical evidence of large-scale diversity in API usage of object-oriented software (DM, BB, MM), pp. 43–52.
WCREWCRE-2013-KhadkaSJHH #challenge #legacy #lessons learnt #migration
Migrating a large scale legacy application to SOA: Challenges and lessons learned (RK, AS, SJ, JH, GPH), pp. 425–432.
ICALPICALP-v1-2013-SviridenkoW #problem #set
Large Neighborhood Local Search for the Maximum Set Packing Problem (MS, JW), pp. 792–803.
CoGCIG-2013-ChurchillB #simulation
Portfolio greedy search and simulation for large-scale combat in starcraft (DC, MB), pp. 1–8.
CoGCIG-2013-WiensDP #behaviour #game studies #learning
Creating large numbers of game AIs by learning behavior for cooperating units (SW, JD, SP), pp. 1–8.
FDGFDG-2013-KoutnikCSG #evolution #network
Evolving large-scale neural networks for vision-based TORCS (JK, GC, JS, FJG), pp. 206–212.
CHICHI-2013-BowserHRRGHRP #approach #game studies #prototype
Prototyping in PLACE: a scalable approach to developing location-based apps and games (AB, DLH, JR, MR, RJG, YH, DR, JP), pp. 1519–1528.
CHICHI-2013-DalsgardE #approach #case study #library
Large-scale participation: a case study of a participatory approach to developing a new public library (PD, EE), pp. 399–408.
CHICHI-2013-IonCHHS #multi #named
Canyon: providing location awareness of multiple moving objects in a detail view on large displays (AI, YLBC, MH, MSH, SDS), pp. 3149–3158.
CHICHI-2013-KharrufaBHLDO #deployment #lessons learnt #multi
Tables in the wild: lessons learned from a large-scale multi-tabletop deployment (AK, MB, PH, DL, PD, PO), pp. 1021–1030.
CHICHI-2013-LeitnerPLRH #gesture #named #performance
Kolibri: tiny and fast gestures for large pen-based surfaces (JL, FP, CL, CR, MH), pp. 1789–1798.
CHICHI-2013-LomasPFK #challenge #design #education #game studies #optimisation #using
Optimizing challenge in an educational game using large-scale design experiments (DL, KP, JF, KRK), pp. 89–98.
CHICHI-2013-McMillanMC #guidelines #human-computer #mobile
Categorised ethical guidelines for large scale mobile HCI (DM, AM, MC), pp. 1853–1862.
CHICHI-2013-MollersDLB #using
Improving touch accuracy on large tabletops using predecessor and successor (MM, ND, SL, JOB), pp. 755–758.
CHICHI-2013-NancelCPYIB #using
High-precision pointing on large wall displays using small handheld devices (MN, OC, EP, XDY, PPI, MBL), pp. 831–840.
CHICHI-2013-SchmidtMB #named
Screenfinity: extending the perception area of content on very large public displays (CS, JM, GB), pp. 1719–1728.
CHICHI-2013-VatavuCG #gesture
Small, medium, or large?: estimating the user-perceived scale of stroke gestures (RDV, GC, LG), pp. 277–280.
CSCWCSCW-2013-AlmuhimediWLSA #analysis #twitter
Tweets are forever: a large-scale quantitative analysis of deleted tweets (HA, SW, BL, NMS, AA), pp. 897–908.
CSCWCSCW-2013-ParkSLB #contest #design
Crowd vs. crowd: large-scale cooperative design through open team competition (CHP, KS, JHL, SHB), pp. 1275–1284.
CSCWCSCW-2013-RostBCB #challenge #communication #dataset #representation #social #social media
Representation and communication: challenges in interpreting large social media datasets (MR, LB, HC, BB), pp. 357–362.
HCIDUXU-WM-2013-BaldassariDPEG #case study #interactive #online
Behind Livia’s Villa: A Case Study for the Devolution of Large Scale Interactive “in-site” to “on-line” Application (GLB, ED, SP, JE, HG), pp. 238–247.
HCIDUXU-WM-2013-SoaresCCNCM #interactive
An Applied Ergonomics Study on IT User Interaction in a Large Hydroelectric Company in the Northeast of Brazil (MMS, FC, WC, AN, JC, SM), pp. 113–120.
HCIHCI-IMT-2013-PelaezSC #collaboration #research
Research on a Large Digital Desktop Integrated in a Traditional Environment for Informal Collaboration (MPP, RS, IC), pp. 348–357.
HCIHCI-IMT-2013-SakataKN #analysis #collaboration #communication
Communication Analysis of Remote Collaboration System with Arm Scaling Function (NS, TK, SN), pp. 378–387.
HCIHIMI-D-2013-IizukaNG #case study #interactive #using
A Study for Personal Use of the Interactive Large Public Display (SI, WN, KG), pp. 55–61.
VISSOFTVISSOFT-2013-FittkauWWH #approach #visualisation
Live trace visualization for comprehending large software landscapes: The ExplorViz approach (FF, JW, CW, WH), pp. 1–4.
CAiSECAiSE-2013-AgtK #automation #modelling #network #semantics
Automated Construction of a Large Semantic Network of Related Terms for Domain-Specific Modeling (HA, RDK), pp. 610–625.
CAiSECAiSE-2013-KapurugeHCK #as a service #named
ROAD4SaaS: Scalable Business Service-Based SaaS Applications (MK, JH, AWC, IK), pp. 338–352.
CAiSECAiSE-2013-LiverK #information management
Integrity in Very Large Information Systems — Dealing with Information Risk Black Swans (BL, HK), pp. 641–656.
CAiSECAiSE-2013-SuriadiWOHD #behaviour #case study #comprehension #process
Understanding Process Behaviours in a Large Insurance Company in Australia: A Case Study (SS, MTW, CO, AHMtH, NJvD), pp. 449–464.
ICEISICEIS-v3-2013-LambeckG #complexity #concept #enterprise #user interface
Mastering ERP Interface Complexity — A Scalable User Interface Concept for ERP Systems (CL, RG), pp. 170–178.
CIKMCIKM-2013-AkibaIY #linear #network #random
Linear-time enumeration of maximal K-edge-connected subgraphs in large networks by random contraction (TA, YI, YY), pp. 909–918.
CIKMCIKM-2013-BogdanovS #effectiveness #nearest neighbour #network
Accurate and scalable nearest neighbors in large networks based on effective importance (PB, AKS), pp. 1009–1018.
CIKMCIKM-2013-ChenW #classification #learning
Cost-sensitive learning for large-scale hierarchical classification (JC, DW), pp. 1351–1360.
CIKMCIKM-2013-FangYZ #graph
Active exploration: simultaneous sampling and labeling for large graphs (MF, JY, XZ), pp. 829–834.
CIKMCIKM-2013-GilpinQD #clustering #dataset #performance
Efficient hierarchical clustering of large high dimensional datasets (SG, BQ, ID), pp. 1371–1380.
CIKMCIKM-2013-Guestrin #machine learning #usability
Usability in machine learning at scale with graphlab (CG), pp. 5–6.
CIKMCIKM-2013-HachenbergG #classification #clustering #documentation #locality #web
Locality sensitive hashing for scalable structural classification and clustering of web documents (CH, TG), pp. 359–368.
CIKMCIKM-2013-HanW #graph #mining
Mining frequent neighborhood patterns in a large labeled graph (JH, JRW), pp. 259–268.
CIKMCIKM-2013-KhanDS #multi
Scalable diversification of multiple search results (HAK, MD, MAS), pp. 775–780.
CIKMCIKM-2013-LiWZWW #probability #similarity
Computing term similarity by large probabilistic isA knowledge (PPL, HW, KQZ, ZW, XW), pp. 1401–1410.
CIKMCIKM-2013-McMinnMJ #corpus #detection #twitter
Building a large-scale corpus for evaluating event detection on twitter (AJM, YM, JMJ), pp. 409–418.
CIKMCIKM-2013-MullangiR #named #performance #query #reachability
SCISSOR: scalable and efficient reachability query processing in time-evolving hierarchies (PRM, LR), pp. 799–804.
CIKMCIKM-2013-ParkC #algorithm #graph #performance #pipes and filters
An efficient MapReduce algorithm for counting triangles in a very large graph (HMP, CWC), pp. 539–548.
CIKMCIKM-2013-WangZS #performance #similarity
Weighted hashing for fast large scale similarity search (QW, DZ, LS), pp. 1185–1188.
ICMLICML-c1-2013-AbernethyAKD #learning #problem
Large-Scale Bandit Problems and KWIK Learning (JA, KA, MK, MD), pp. 588–596.
ICMLICML-c1-2013-AfkanpourGSB #algorithm #kernel #learning #multi #random
A Randomized Mirror Descent Algorithm for Large Scale Multiple Kernel Learning (AA, AG, CS, MB), pp. 374–382.
ICMLICML-c1-2013-GilboaSCG #approximate #multi #process #using
Scaling Multidimensional Gaussian Processes using Projected Additive Approximations (EG, YS, JPC, EG), pp. 454–461.
ICMLICML-c2-2013-GolovinSMY #learning #ram
Large-Scale Learning with Less RAM via Randomization (DG, DS, HBM, MY), pp. 325–333.
ICMLICML-c2-2013-GopalY #distributed #modelling
Distributed training of Large-scale Logistic models (SG, YY), pp. 289–297.
ICMLICML-c2-2013-YangPK #optimisation #visualisation
Scalable Optimization of Neighbor Embedding for Visualization (ZY, JP, SK), pp. 127–135.
ICMLICML-c3-2013-GittensM #machine learning
Revisiting the Nystrom method for improved large-scale machine learning (AG, MWM), pp. 567–575.
ICMLICML-c3-2013-Meng #random
Scalable Simple Random Sampling and Stratified Sampling (XM), pp. 531–539.
ICMLICML-c3-2013-ReedG #process
Scaling the Indian Buffet Process via Submodular Maximization (CR, ZG), pp. 1013–1021.
ICMLICML-c3-2013-YangMM
Quantile Regression for Large-scale Applications (JY, XM, MWM), pp. 881–887.
KDDKDD-2013-AhmedS #modelling #parametricity
The dataminer’s guide to scalable mixed-membership and nonparametric bayesian models (AA, AJS), p. 1529.
KDDKDD-2013-ChakrabartiH #learning #social
Speeding up large-scale learning with a social prior (DC, RH), pp. 650–658.
KDDKDD-2013-FriezeGT #algorithm #graph #mining #modelling
Algorithmic techniques for modeling and mining large graphs (AMAzING) (AMF, AG, CET), p. 1523.
KDDKDD-2013-Ghani #social
Targeting and influencing at scale: from presidential elections to social good (RG), p. 1137.
KDDKDD-2013-GopalY #classification #dependence #recursion #visual notation
Recursive regularization for large-scale classification with hierarchical and graphical dependencies (SG, YY), pp. 257–265.
KDDKDD-2013-KengneFTIRWS #execution #multi #sequence
Efficiently rewriting large multimedia application execution traces with few event sequences (CKK, LCF, AT, NI, MCR, TW, MS), pp. 1348–1356.
KDDKDD-2013-KohaviDFWXP #online
Online controlled experiments at large scale (RK, AD, BF, TW, YX, NP), pp. 1168–1176.
KDDKDD-2013-Lacoste-JulienPDKGG #knowledge base #named
SIGMa: simple greedy matching for aligning large knowledge bases (SLJ, KP, AD, GK, TG, ZG), pp. 572–580.
KDDKDD-2013-Mu0ZT #probability #problem
Constrained stochastic gradient descent for large-scale least squares problem (YM, WD, TZ, DT), pp. 883–891.
KDDKDD-2013-OuCWWZY
Comparing apples to oranges: a scalable solution with heterogeneous hashing (MO, PC, FW, JW, WZ, SY), pp. 230–238.
KDDKDD-2013-PhamP #kernel #performance #polynomial
Fast and scalable polynomial kernels via explicit feature maps (NP, RP), pp. 239–247.
KDDKDD-2013-RaederPDSP #clustering #reduction #using
Scalable supervised dimensionality reduction using clustering (TR, CP, BD, OS, FJP), pp. 1213–1221.
KDDKDD-2013-ShahafYSJWL
Information cartography: creating zoomable, large-scale maps of information (DS, JY, CS, JJ, HW, JL), pp. 1097–1105.
KDDKDD-2013-SongZSHUS #modelling #probability #reasoning
Modeling and probabilistic reasoning of population evacuation during large-scale disaster (XS, QZ, YS, TH, SU, RS), pp. 1231–1239.
KDDKDD-2013-StitelmanPDHRP #detection #network #online #using
Using co-visitation networks for detecting large scale online display advertising exchange fraud (OS, CP, BD, RH, TR, FJP), pp. 1240–1248.
KDDKDD-2013-TabeiKKY #constraints #similarity
Succinct interval-splitting tree for scalable similarity search of compound-protein pairs with property constraints (YT, AK, MK, YY), pp. 176–184.
KDDKDD-2013-TangLSPG #automation #framework #monitoring #optimisation
An integrated framework for optimizing automatic monitoring systems in large IT infrastructures (LT, TL, LS, FP, GG), pp. 1249–1257.
KDDKDD-2013-TangWS #confluence #named #network #social
Confluence: conformity influence in large social networks (JT, SW, JS), pp. 347–355.
KDDKDD-2013-WangMP #metric #similarity
Scalable all-pairs similarity search in metric spaces (YW, AM, SP), pp. 829–837.
KDDKDD-2013-YangWZCZZYMFWLLT #named #network #social
SAE: social analytic engine for large networks (YY, JW, YZ, WC, JZ, HZ, ZY, BM, ZF, SW, XL, DL, JT), pp. 1502–1505.
KDDKDD-2013-YenCLLL #classification #coordination #linear #memory management
Indexed block coordinate descent for large-scale linear classification with limited memory (IEHY, CFC, TWL, SWL, SDL), pp. 248–256.
KDDKDD-2013-ZhuXWL #distance #graph #performance #query
Efficient single-source shortest path and distance queries on large graphs (ADZ, XX, SW, WL), pp. 998–1006.
KDDKDD-2013-ZhuYGM #analysis #modelling #topic
Scalable text and link analysis with mixed-topic link models (YZ, XY, LG, CM), pp. 473–481.
KDDKDD-2013-ZhuZZZ #modelling #topic
Scalable inference in max-margin topic models (JZ, XZ, LZ, BZ), pp. 964–972.
KEODKEOD-2013-NadarajanYC #framework #multi #ontology #performance #workflow
Multiple Ontologies Enhanced with Performance Capabilities to Define Interacting Domains within a Workflow Framework for Analysing Large Undersea Videos (GN, CLY, YHCB), pp. 419–426.
MLDMMLDM-2013-AllahSG #algorithm #array #dataset #mining #performance
An Efficient and Scalable Algorithm for Mining Maximal — High Confidence Rules from Microarray Dataset (WZAA, YKES, FFMG), pp. 352–366.
MLDMMLDM-2013-DoanDP #classification #visual notation
Large Scale Visual Classification with Many Classes (TND, TND, FP), pp. 629–643.
RecSysRecSys-2013-Aiolli #dataset #performance #recommendation
Efficient top-n recommendation for very large scale binary rated datasets (FA), pp. 273–280.
RecSysRecSys-2013-KoenigsteinK #recommendation #towards
Towards scalable and accurate item-oriented recommendations (NK, YK), pp. 419–422.
SEKESEKE-2013-ChaoY #analysis #order #reachability
A Best Method to Synthesize Very Large K-th Order Systems without Reachability Analysis (DYC, THY), pp. 417–420.
SIGIRSIGIR-2013-CambazogluB #challenge #performance #web
Scalability and efficiency challenges in commercial web search engines (BBC, RABY), p. 1124.
SIGIRSIGIR-2013-DemidovaZN #performance #query
Efficient query construction for large scale data (ED, XZ, WN), pp. 573–582.
SIGIRSIGIR-2013-LuWTZHZ #rank #ranking
A low rank structural large margin method for cross-modal ranking (XL, FW, ST, ZZ, XH, YZ), pp. 433–442.
MODELSMoDELS-2013-FariasGWL #case study #design #industrial #modelling
Analyzing the Effort of Composing Design Models of Large-Scale Software in Industrial Case Studies (KF, AG, JW, CJPdL), pp. 639–655.
SPLCSPLC-2013-MartiniPB #agile #communication #development #reuse
Communication factors for speed and reuse in large-scale agile software development (AM, LP, JB), pp. 42–51.
ECOOPECOOP-2013-TrudelFNM #automation #object-oriented #re-engineering
Really Automatic Scalable Object-Oriented Reengineering (MT, CAF, MN, BM), pp. 477–501.
OOPSLAOOPSLA-2013-BoisSEE #concurrent #graph #multi #thread #visualisation
Bottle graphs: visualizing scalability bottlenecks in multi-threaded applications (KDB, JBS, SE, LE), pp. 355–372.
HILTHILT-2013-Whalen #analysis #architecture #development #formal method #modelling #using
Up and out: scaling formal analysis using model-based development and architecture modeling (MWW), pp. 41–42.
PADLPADL-2013-LiangK #automation #logic programming #named #source code
Terminyzer: An Automatic Non-termination Analyzer for Large Logic Programs (SL, MK), pp. 173–189.
PEPMPEPM-2013-SatoUK #higher-order #model checking #source code #towards
Towards a scalable software model checker for higher-order programs (RS, HU, NK), pp. 53–62.
PLDIPLDI-2013-ElwazeerAKSB #data type #detection
Scalable variable and data type detection in a binary rewriter (KE, KA, AK, MS, RB), pp. 51–60.
PLDIPLDI-2013-GreenLRSV #named #programming language #quantum
Quipper: a scalable quantum programming language (ASG, PLL, NJR, PS, BV), pp. 333–342.
RERE-2013-GolnamRWK #case study #integration
The integration of an RE method and AHP: A pilot study in a large Swiss bank (AG, GR, AW, SK), pp. 308–313.
REFSQREFSQ-2013-Ott #automation #categorisation #natural language #overview #specification
Automatic Requirement Categorization of Large Natural Language Specifications at Mercedes-Benz for Review Improvements (DO), pp. 50–64.
REFSQREFSQ-2013-Regnell #modelling #requirements #towards
reqT.org — Towards a Semi-Formal, Open and Scalable Requirements Modeling Tool (BR), pp. 112–118.
SACSAC-PL-J-2011-AcherCLF13 #domain-specific language #feature model #modelling #named
FAMILIAR: A domain-specific language for large scale management of feature models (MA, PC, PL, RBF), pp. 657–681.
ASEASE-2013-ChandramohanTBSP #approach #behaviour #bound #detection #modelling
A scalable approach for malware detection through bounded feature space behavior modeling (MC, HBKT, LCB, LKS, BMP), pp. 312–322.
ASEASE-2013-KimKKLJK #automation #embedded #industrial #testing #using
Automated unit testing of large industrial embedded software using concolic testing (YK, YK, TK, GL, YJ, MK), pp. 519–528.
ASEASE-2013-MoritzVPGMG #api #detection #named #repository #source code #visualisation
ExPort: Detecting and visualizing API usages in large source code repositories (EM, MLV, DP, MG, CM, MG), pp. 646–651.
ASEASE-2013-SayyadIMA #product line
Scalable product line configuration: A straw to break the camel’s back (ASS, JI, TM, HA), pp. 465–474.
ESEC-FSEESEC-FSE-2013-DavrilDHACH #feature model
Feature model extraction from large collections of informal product descriptions (JMD, ED, NH, MA, JCH, PH), pp. 290–300.
ESEC-FSEESEC-FSE-2013-KumarCS #analysis #industrial #precise
Precise range analysis on large industry code (SK, BC, US), pp. 675–678.
ESEC-FSEESEC-FSE-2013-LiebigRKADL #analysis
Scalable analysis of variable software (JL, AvR, CK, SA, JD, CL), pp. 81–91.
ESEC-FSEESEC-FSE-2013-McPeakGR #debugging #detection #incremental
Scalable and incremental software bug detection (SM, CHG, MKR), pp. 554–564.
ICSEICSE-2013-BrownAR #delivery
Agility at scale: economic governance, measured improvement, and disciplined delivery (AWB, SA, WR), pp. 873–881.
ICSEICSE-2013-DyerNRN #framework #named #repository
Boa: a language and infrastructure for analyzing ultra-large-scale software repositories (RD, HAN, HR, TNN), pp. 422–431.
ICSEICSE-2013-FitzgeraldSOO #agile #case study #industrial
Scaling agile methods to regulated environments: an industry case study (BF, KJS, RO, DO), pp. 863–872.
ICSEICSE-2013-Jonsson #machine learning #performance #using
Increasing anomaly handling efficiency in large organizations using applied machine learning (LJ), pp. 1361–1364.
ICSEICSE-2013-MalikHH #automation #detection #performance #testing
Automatic detection of performance deviations in the load testing of large scale systems (HM, HH, AEH), pp. 1012–1021.
ICSEICSE-2013-Northrop #case study #matter #years after
Does scale really matter? ultra-large-scale systems seven years after the study (LMN), p. 857.
ICSEICSE-2013-XingXJ #benchmark #feature model #kernel #metric #research
A large scale Linux-kernel based benchmark for feature location research (ZX, YX, SJ), pp. 1311–1314.
SACSAC-2013-BaltzerRZ
Building a scalable spatial OLAP system (OB, ARC, NZ), pp. 13–15.
SACSAC-2013-BhattacharjeeJ #algorithm #named #repository #similarity
CodeBlast: a two-stage algorithm for improved program similarity matching in large software repositories (AB, HMJ), pp. 846–852.
SACSAC-2013-BrancoLR #bound #protocol
Bounded gossip: a gossip protocol for large-scale datacenters (MB, JL, LR), pp. 591–596.
SACSAC-2013-FanYZ #architecture #framework #modelling
A generic framework for deriving architecture modeling methods for large-scale software-intensive systems (ZF, TY, LZ), pp. 1750–1757.
SACSAC-2013-HuangMGM #multi #realtime
Throughput-constrained voltage and frequency scaling for real-time heterogeneous multiprocessors (PH, OM, KG, AMM), pp. 1517–1524.
SACSAC-2013-KoukiL #named
SCAling: SLA-driven cloud auto-scaling (YK, TL), pp. 411–414.
SACSAC-2013-MaierST #design #reliability #symbolic computation
Reliable scalable symbolic computation: the design of SymGridPar2 (PM, RJS, PWT), pp. 1674–1681.
SACSAC-2013-MeilingSSW #communication #framework #grid #multi #network #smarttech #using
A scalable communication infrastructure for smart grid applications using multicast over public networks (SM, TS, TCS, MW), pp. 690–694.
SACSAC-2013-NikolaevskiyLPPG #multi #named
isBF: scalable in-packet bloom filter based multicast (IN, AL, TP, VP, AG), pp. 646–648.
SACSAC-2013-PayetDKV #analysis #execution
EARs in the wild: large-scale analysis of execution after redirect vulnerabilities (PP, AD, CK, GV), pp. 1792–1799.
GPCEGPCE-2013-BassoPOB #model transformation #reuse
Supporting large scale model transformation reuse (FPB, RMP, TCdO, LBB), pp. 169–178.
ASPLOSASPLOS-2013-Gidra0SS #case study #garbage collection #multi
A study of the scalability of stop-the-world garbage collectors on multicores (LG, GT, JS, MS), pp. 229–240.
ASPLOSASPLOS-2013-QianTSQ #consistency #detection #named #precise
Volition: scalable and precise sequential consistency violation detection (XQ, JT, BS, DQ), pp. 535–548.
CASECASE-2013-HuZL13a #automation #distributed #petri net
Maximally permissive distributed control of large scale automated manufacturing systems modeled with Petri nets (HH, MZ, YL), pp. 1145–1150.
CASECASE-2013-YeWZML #approach #network #optimisation #predict
A signal split optimization approach based on model predictive control for large-scale urban traffic networks (BLY, WW, XZ, WJM, JL), pp. 904–909.
CASECASE-2013-ZhangPJST #energy #interface #monitoring #using
A secure and scalable telemonitoring system using ultra-low-energy wireless sensor interface for long-term monitoring in life science applications (WZ, PP, EJ, RS, KT), pp. 617–622.
CGOCGO-2013-ArthurMRAB #debugging #named #profiling #security
Schnauzer: scalable profiling for likely security bug sites (WA, BM, RR, TMA, VB), p. 11.
CGOCGO-2013-GartleyPSG #case study #design #experience #framework #interpreter #profiling #robust
Experiences in designing a robust and scalable interpreter profiling framework (IG, MP, VS, NG), p. 10.
DACDAC-2013-ChenXKGHKOA #design #manycore
Dynamic voltage and frequency scaling for shared resources in multicore processor designs (XC, ZX, HK, PVG, JH, MK, ÜYO, RZA), p. 7.
DACDAC-2013-Feng #grid #power management #verification
Scalable vectorless power grid current integrity verification (ZF), p. 8.
DACDAC-2013-JungPPC #distributed #embedded #framework #named #platform
netShip: a networked virtual platform for large-scale heterogeneous distributed embedded systems (YJ, JP, MP, LPC), p. 10.
DACDAC-2013-OnizawaG #clustering #network #power management
Low-power area-efficient large-scale IP lookup engine based on binary-weighted clustered networks (NO, WJG), p. 6.
DACDAC-2013-WangZSLG #modelling #performance #reuse
Bayesian model fusion: large-scale performance modeling of analog and mixed-signal circuits by reusing early-stage data (FW, WZ, SS, XL, CG), p. 6.
DACDAC-2013-YuanX #fault #logic #low cost #named
InTimeFix: a low-cost and scalable technique for in-situ timing error masking in logic circuits (FY, QX), p. 6.
DACDAC-2013-ZhouLJ #3d #complexity #finite #linear #multi
A direct finite element solver of linear complexity for large-scale 3-D circuit extraction in multiple dielectrics (BZ, HL, DJ), p. 6.
DATEDATE-2013-ChanCK #adaptation
Impact of adaptive voltage scaling on aging-aware signoff (TBC, WTJC, ABK), pp. 1683–1688.
DATEDATE-2013-CilardoGMM #design #performance
Efficient and scalable OpenMP-based system-level design (AC, LG, AM, NM), pp. 988–991.
DATEDATE-2013-El-NacouziAPZJM #detection
A dual grain hit-miss detector for large die-stacked DRAM caches (MEN, IA, MP, JZ, NDEJ, AM), pp. 89–92.
DATEDATE-2013-Feng #geometry #grid #power management #reduction
Large-scale flip-chip power grid reduction with geometric templates (ZF), pp. 1679–1682.
DATEDATE-2013-LeGD #design #fault #locality
Scalable fault localization for SystemC TLM designs (HML, DG, RD), pp. 35–38.
DATEDATE-2013-LyrasRPS #multi #simulation
Hypervised transient SPICE simulations of large netlists & workloads on multi-processor systems (GL, DR, AP, DS), pp. 655–658.
DATEDATE-2013-MockCRB #interactive
Interactions of large scale EV mobility and virtual power plants (RM, TSC, JR, LB), pp. 1725–1729.
DATEDATE-2013-YilmazSWO #analysis #fault #industrial #simulation
Fault analysis and simulation of large scale industrial mixed-signal circuits (EY, GS, LW, SO), pp. 565–570.
HPCAHPCA-2013-AbeyratneDLSGDBM #symmetry #towards
Scaling towards kilo-core processors with asymmetric high-radix topologies (NA, RD, QL, KS, BG, RGD, DB, TNM), pp. 496–507.
HPCAHPCA-2013-ChangRLJ #comparison #energy
Technology comparison for large last-level caches (L3Cs): Low-leakage SRAM, low write-energy STT-RAM, and refresh-optimized eDRAM (MTC, PR, SLL, BJ), pp. 143–154.
HPCAHPCA-2013-MahmoodKH #adaptation #architecture #named
Macho: A failure model-oriented adaptive cache architecture to enable near-threshold voltage scaling (TM, SK, SH), pp. 532–541.
HPDCHPDC-2013-ClaySM #clustering #interactive
Building and scaling virtual clusters with residual resources from interactive clouds (RBC, ZS, XM), pp. 119–120.
HPDCHPDC-2013-GillLHNGL #composition #declarative #framework #manycore #named #platform
Scalanytics: a declarative multi-core platform for scalable composable traffic analytics (HG, DL, XH, CN, TG, BTL), pp. 61–72.
HPDCHPDC-2013-KamalBBCM #simulation
Load balancing in large-scale epidemiological simulations (TK, KRB, ARB, YC, MVM), pp. 123–124.
HPDCHPDC-2013-LakshminarasimhanBPZJVPS #encoding #query
Scalable in situ scientific data encoding for analytical query processing (SL, DABI, SVP, XZ, JJ, VV, MEP, NFS), pp. 1–12.
HPDCHPDC-2013-ZhangKWWF #parallel
MTC envelope: defining the capability of large scale computers in the context of parallel scripting applications (ZZ, DSK, MW, JMW, ITF), pp. 37–48.
HPDCHPDC-2013-ZhouTKB #automation #debugging #detection #named
WuKong: automatically detecting and localizing bugs that manifest at large system scales (BZ, JT, MK, SB), pp. 131–142.
ISMMISMM-2013-LiCK #analysis #graph #pointer #precise
Precise and scalable context-sensitive pointer analysis via value flow graph (LL, CC, NK), pp. 85–96.
PDPPDP-2013-AtaeeGP #algorithm #multi #named #reliability #replication #streaming
ReStream — A Replication Algorithm for Reliable and Scalable Multimedia Streaming (SA, BG, FP), pp. 68–76.
PDPPDP-2013-Aviles-GonzalezPG
Scalable Huge Directories through OSD+ Devices (AAG, JP, PGF), pp. 1–8.
PDPPDP-2013-PetridesDCT #database #manycore #performance #query
Scalability and Efficiency of Database Queries on Future Many-Core Systems (PP, AD, CC, PT), pp. 24–28.
PDPPDP-2013-YoshinagaTHSNI #hybrid #manycore #parallel
A Delegation Mechanism on Many-Core Oriented Hybrid Parallel Computers for Scalability of Communicators and Communications in MPI (KY, YT, AH, MS, MN, YI), pp. 249–253.
PPoPPPPoPP-2013-ChenC #parallel
Scalable deterministic replay in a parallel full-system emulator (YC, HC), pp. 207–218.
PPoPPPPoPP-2013-DiceLM #statistics
Scalable statistics counters (DD, YL, MM), pp. 307–308.
PPoPPPPoPP-2013-ParkSI #concurrent #detection #source code
Scalable data race detection for partitioned global address space programs (CSP, KS, CI), pp. 305–306.
PPoPPPPoPP-2013-WozniakAWKLF #data flow #named #programming
Swift/T: scalable data flow programming for many-task applications (JMW, TGA, MW, DSK, ELL, ITF), pp. 309–310.
PPoPPPPoPP-2013-ZhouKB #debugging #effectiveness #named
WuKong: effective diagnosis of bugs at large system scales (BZ, MK, SB), pp. 317–318.
SOSPSOSP-2013-ClementsKZMK #commutative #design #manycore
The scalable commutativity rule: designing scalable software for multicore processors (ATC, MFK, NZ, RTM, EK), pp. 1–17.
SOSPSOSP-2013-ZahariaDLHSS #fault tolerance #streaming
Discretized streams: fault-tolerant streaming computation at scale (MZ, TD, HL, TH, SS, IS), pp. 423–438.
FASEFASE-2013-TrippPCCG #analysis #named #security #web
Andromeda: Accurate and Scalable Security Analysis of Web Applications (OT, MP, PC, RC, SG), pp. 210–225.
STOCSTOC-2013-Miller #graph #optimisation #problem #using
Solving large optimization problems using spectral graph theory (GLM), p. 981.
STOCSTOC-2013-Wootters #fault #linear #on the #random
On the list decodability of random linear codes with large error rates (MW), pp. 853–860.
CAVCAV-2013-ChakrabortyMV #generative #satisfiability
A Scalable and Nearly Uniform Generator of SAT Witnesses (SC, KSM, MYV), pp. 608–623.
CAVCAV-2013-PauleveAK #approximate #automaton #network #reachability #set
Under-Approximating Cut Sets for Reachability in Large Scale Automata Networks (LP, GA, HK), pp. 69–84.
ICLPICLP-J-2013-LiangK #analysis #logic programming #source code
A practical analysis of non-termination in large logic programs (SL, MK), pp. 705–719.
ICSTICST-2013-YeolekarUAKV #generative #model checking #testing #using
Scaling Model Checking for Test Generation Using Dynamic Inference (AY, DU, VA, SK, RV), pp. 184–191.
QoSAQoSA-2012-Marzolla #energy #optimisation
Optimizing the energy consumption of large-scale applications (MM), pp. 123–132.
WICSA-ECSAWICSA-ECSA-2012-EklundB #architecture #empirical
Architecture for Large-Scale Innovation Experiment Systems (UE, JB), pp. 244–248.
WICSA-ECSAWICSA-ECSA-2012-RathfelderBKR #email #monitoring #performance #predict #using
Workload-aware System Monitoring Using Performance Predictions Applied to a Large-scale E-Mail System (CR, SB, KK, RHR), pp. 31–40.
WICSA-ECSAWICSA-ECSA-2012-WoodsB #architecture #case study #experience #industrial #information management #using
Using an Architecture Description Language to Model a Large-Scale Information System — An Industrial Experience Report (EW, RB), pp. 239–243.
HTHT-2012-NakajimaZIN #analysis #detection
Early detection of buzzwords based on large-scale time-series analysis of blog entries (SN, JZ, YI, RYN), pp. 275–284.
PODSPODS-2012-Mahoney #approximate #data analysis
Approximate computation and implicit regularization for very large-scale data analysis (MWM), pp. 143–154.
SIGMODSIGMOD-2012-AkogluCKKF #graph #mining #named #visualisation
OPAvion: mining and visualization in large graphs (LA, DHC, UK, DK, CF), pp. 717–720.
SIGMODSIGMOD-2012-ChengKCC #approach #distance #graph #performance #query
Efficient processing of distance queries in large graphs: a vertex cover approach (JC, YK, SC, CC), pp. 457–468.
SIGMODSIGMOD-2012-FaloutsosK #algorithm #graph #mining
Managing and mining large graphs: patterns and algorithms (CF, UK), pp. 585–588.
SIGMODSIGMOD-2012-HansenL #database #named #towards
ColumbuScout: towards building local search engines over large databases (CH, FL), pp. 617–620.
SIGMODSIGMOD-2012-JinRDY #graph #named #reachability
SCARAB: scaling reachability computation on large graphs (RJ, NR, SD, JXY), pp. 169–180.
SIGMODSIGMOD-2012-JinRXL #approach #distance #graph #query
A highway-centric labeling approach for answering distance queries on large sparse graphs (RJ, NR, YX, VEL), pp. 445–456.
SIGMODSIGMOD-2012-KimPSLDC #clustering #distributed #named #performance #ram
CloudRAMSort: fast and efficient large-scale distributed RAM sort on shared-nothing cluster (CK, JP, NS, HL, PD, JC), pp. 841–850.
SIGMODSIGMOD-2012-LinK #machine learning #twitter
Large-scale machine learning at twitter (JL, AK), pp. 793–804.
SIGMODSIGMOD-2012-MondalD #graph
Managing large dynamic graphs efficiently (JM, AD), pp. 145–156.
SIGMODSIGMOD-2012-NeophytouGHLBLMC #comprehension #named #navigation
AstroShelf: understanding the universe through scalable navigation of a galaxy of annotations (PN, RG, RH, TL, DB, AL, GEM, PKC), pp. 713–716.
SIGMODSIGMOD-2012-PeltS #crowdsourcing #design #framework #platform
Designing a scalable crowdsourcing platform (CVP, AS), pp. 765–766.
SIGMODSIGMOD-2012-SarmaLGMH #performance
Efficient spatial sampling of large geographical tables (ADS, HL, HG, JM, AYH), pp. 193–204.
SIGMODSIGMOD-2012-ShaoWX #graph #implementation #mining
Managing and mining large graphs: systems and implementations (BS, HW, YX), pp. 589–592.
SIGMODSIGMOD-2012-Sivasubramanian #database
Amazon dynamoDB: a seamlessly scalable non-relational database service (SS), pp. 729–730.
SIGMODSIGMOD-2012-SliwkanichSYHB #corpus #summary #towards #visualisation
Towards scalable summarization and visualization of large text corpora (TS, DS, AY, MH, DB), p. 863.
SIGMODSIGMOD-2012-YangYZK #effectiveness #graph #towards
Towards effective partition management for large graphs (SY, XY, BZ, AK), pp. 517–528.
SIGMODSIGMOD-2012-YuAY #query
Processing a large number of continuous preference top-k queries (AY, PKA, JY), pp. 397–408.
VLDBVLDB-2012-AgarwalPMIMS #interactive #query
Blink and It’s Done: Interactive Queries on Very Large Data (SA, AP, BM, API, SM, IS), pp. 1902–1905.
VLDBVLDB-2012-AlexandrovTM #generative #named
Myriad: Scalable and Expressive Data Generation (AA, KT, VM), pp. 1890–1893.
VLDBVLDB-2012-BahmaniMVKV
Scalable K-Means++ (BB, BM, AV, RK, SV), pp. 622–633.
VLDBVLDB-2012-ChoiCT #algorithm #database
A Scalable Algorithm for Maximizing Range Sum in Spatial Databases (DWC, CWC, YT), pp. 1088–1099.
VLDBVLDB-2012-JestesPLT #ranking
Ranking Large Temporal Data (JJ, JMP, FL, MT), pp. 1412–1423.
VLDBVLDB-2012-JiangBCL #named #parallel
MOIST: A Scalable and Parallel Moving Object Indexer with School Tracking (JJ, HB, EYC, YL), pp. 1838–1849.
VLDBVLDB-2012-MetwallyF #framework #multi #named #pipes and filters #similarity
V-SMART-Join: A Scalable MapReduce Framework for All-Pair Similarity Joins of Multisets and Vectors (AM, CF), pp. 704–715.
VLDBVLDB-2012-PrakashF #comprehension #graph
Understanding and Managing Cascades on Large Graphs (BAP, CF), pp. 2024–2025.
VLDBVLDB-2012-Shirani-MehrKS #dataset #evaluation #performance #query #reachability
Efficient Reachability Query Evaluation in Large Spatiotemporal Contact Datasets (HSM, FBK, CS), pp. 848–859.
VLDBVLDB-2012-SilvaMZ #correlation #graph #mining
Mining Attribute-structure Correlated Patterns in Large Attributed Graphs (AS, WMJ, MJZ), pp. 466–477.
VLDBVLDB-2012-SowellGS #distributed #multi #named
Minuet: A Scalable Distributed Multiversion B-Tree (BS, WMG, MAS), pp. 884–895.
VLDBVLDB-2012-VoWACO #database #in the cloud #named
LogBase: A Scalable Log-structured Database System in the Cloud (HTV, SW, DA, GC, BCO), pp. 1004–1015.
VLDBVLDB-2012-YuanWCW #database #graph #performance #probability #similarity
Efficient Subgraph Similarity Search on Large Probabilistic Graph Databases (YY, GW, LC, HW), pp. 800–811.
VLDBVLDB-2013-ZhaoT12 #analysis #network #social #visual notation
Large Scale Cohesive Subgraphs Discovery for Social Network Visual Analysis (FZ, AKHT), pp. 85–96.
CSEETCSEET-2012-MacKellar #case study #communication #re-engineering
A Case Study of Group Communication Patterns in a Large Project Software Engineering Course (BM), pp. 134–138.
CSMRCSMR-2012-Koschke #clone detection #detection #using
Large-Scale Inter-System Clone Detection Using Suffix Trees (RK), pp. 309–318.
ICSMEICSM-2012-BauerHHJC #analysis #framework #incremental #quality
A framework for incremental quality analysis of large software systems (VB, LH, BH, EJ, MC), pp. 537–546.
ICSMEICSM-2012-QiML #automation #performance #source code #using
Making automatic repair for large-scale programs more efficient using weak recompilation (YQ, XM, YL), pp. 254–263.
MSRMSR-2012-BirdN #development #distributed #open source #what
Who? Where? What? Examining distributed development in two large open source projects (CB, NN), pp. 237–246.
MSRMSR-2012-Breckel #comparison #database #debugging #detection #fault #mining
Error mining: Bug detection through comparison with large code databases (AB), pp. 175–178.
WCREWCRE-2012-AlomariCM #approach #performance #slicing
A Very Efficient and Scalable Forward Static Slicing Approach (HWA, MLC, JIM), pp. 425–434.
ICALPICALP-v1-2012-DinitzKR #approximate
Label Cover Instances with Large Girth and the Hardness of Approximating Basic k-Spanner (MD, GK, RR), pp. 290–301.
CHICHI-2012-BaurBB #analysis #component #music
Listening factors: a large-scale principal components analysis of long-term music listening histories (DB, JB, AB), pp. 1273–1276.
CHICHI-2012-DunneRLMR #multi #named #network
GraphTrail: analyzing large multivariate, heterogeneous networks while supporting exploration history (CD, NHR, BL, RAM, GGR), pp. 1663–1672.
CHICHI-2012-FisherPDs #dataset #incremental #performance #trust #visualisation
Trust me, I’m partially right: incremental visualization lets analysts explore large datasets faster (DF, IOP, SMD, MMCS), pp. 1673–1682.
CHICHI-2012-GuyURWO #enterprise #people
Best faces forward: a large-scale study of people search in the enterprise (IG, SU, IR, SW, TO), pp. 1775–1784.
CHICHI-2012-JoshiKC #mobile
Looking at you: fused gyro and face tracking for viewing large imagery on mobile devices (NJ, AK, MFC), pp. 2211–2220.
CHICHI-2012-KhaledI #game studies
Tales from the front lines of a large-scale serious game project (RK, GI), pp. 69–78.
CHICHI-2012-SchwarzKHDW #ad hoc #mobile #using
Phone as a pixel: enabling ad-hoc, large-scale displays using mobile devices (JS, DK, CH, PD, AW), pp. 2235–2238.
CHICHI-2012-SeifriedRHS #interactive #undo
Regional undo/redo techniques for large interactive surfaces (TS, CR, MH, SDS), pp. 2855–2864.
CHICHI-2012-YangFLGB #architecture #navigation #web
Aural browsing on-the-go: listening-based back navigation in large web architectures (TY, MF, YL, RRG, DB), pp. 277–286.
CSCWCSCW-2012-PhillipsRS #development #integration #parallel #process
Information needs for integration decisions in the release process of large-scale parallel development (SP, GR, JS), pp. 1371–1380.
CSCWCSCW-2012-XuB #case study #community #interactive #online #what
What do you think?: a case study of benefit, expectation, and interaction in a large online critique community (AX, BPB), pp. 295–304.
ICEISICEIS-J-2012-ChenIAPGLMW12a #enterprise
Large-Scale Enterprise Systems: Changes and Impacts (WC, AI, AA, JP, CG, ML, TSEM, AW), pp. 274–290.
ICEISICEIS-v1-2012-TertiltBK #algorithm #enterprise #modelling #performance #using
Modeling the Performance and Scalability of a SAP ERP System using an Evolutionary Algorithm (DT, AB, HK), pp. 112–118.
ICEISICEIS-v2-2012-ChenIAPGLMW #enterprise #impact analysis
Change Impact Analysis for Large-scale Enterprise Systems (WC, AI, AA, JP, CG, ML, TSEM, AW), pp. 359–368.
CIKMCIKM-2012-BabbarPGA #classification #empirical #on the #trade-off
On empirical tradeoffs in large scale hierarchical classification (RB, IP, ÉG, CA), pp. 2299–2302.
CIKMCIKM-2012-BambaSGBF #concept #recommendation #using
The twitaholic next door.: scalable friend recommender system using a concept-sensitive hash function (PB, JS, CG, NB, JF), pp. 2275–2278.
CIKMCIKM-2012-BhatiaHHS #approach #query
A scalable approach for performing proximal search for verbose patent search queries (SB, BH, QH, WSS), pp. 2603–2606.
CIKMCIKM-2012-CandanRSW #named #set #visualisation
STFMap: query- and feature-driven visualization of large time series data sets (KSC, RR, MLS, XW), pp. 2743–2745.
CIKMCIKM-2012-ChiangWD #clustering #network #normalisation #using
Scalable clustering of signed networks using balance normalized cut (KYC, JJW, ISD), pp. 615–624.
CIKMCIKM-2012-CreceliusS #graph #maintenance #nearest neighbour
Pay-as-you-go maintenance of precomputed nearest neighbors in large graphs (TC, RS), pp. 952–961.
CIKMCIKM-2012-DengSZ #analysis #documentation #performance
Efficient jaccard-based diversity analysis of large document collections (FD, SS, SZ), pp. 1402–1411.
CIKMCIKM-2012-GaoCK #graph #keyword
Information-complete and redundancy-free keyword search over large data graphs (BJG, ZC, QK), pp. 2639–2642.
CIKMCIKM-2012-GubichevN #approximate #graph #performance
Fast approximation of steiner trees in large graphs (AG, TN), pp. 1497–1501.
CIKMCIKM-2012-JatowtT #analysis
Large scale analysis of changes in english vocabulary over recent time (AJ, KT), pp. 2523–2526.
CIKMCIKM-2012-LiYWK #graph #proximity
Density index and proximity search in large graphs (NL, XY, ZW, AK), pp. 235–244.
CIKMCIKM-2012-LuZZX #image #learning #semantics #set
Semantic context learning with large-scale weakly-labeled image set (YL, WZ, KZ, XX), pp. 1859–1863.
CIKMCIKM-2012-NegahbanRG #learning #multi #performance #statistics #using
Scaling multiple-source entity resolution using statistically efficient transfer learning (SN, BIPR, JG), pp. 2224–2228.
CIKMCIKM-2012-RahmanBH #algorithm #analysis #approximate #graph #named
GRAFT: an approximate graphlet counting algorithm for large graph analysis (MR, MB, MAH), pp. 1467–1471.
CIKMCIKM-2012-SakrEH #graph #hybrid #named #query
G-SPARQL: a hybrid engine for querying large attributed graphs (SS, SE, YH), pp. 335–344.
CIKMCIKM-2012-SarmaJMB #automation
An automatic blocking mechanism for large-scale de-duplication tasks (ADS, AJ, AM, PB), pp. 1055–1064.
CIKMCIKM-2012-ShenRS #categorisation #e-commerce
Large-scale item categorization for e-commerce (DS, JDR, BS), pp. 595–604.
CIKMCIKM-2012-TongPEFF #graph
Gelling, and melting, large graphs by edge manipulation (HT, BAP, TER, MF, CF), pp. 245–254.
CIKMCIKM-2012-XiangFWHR #corpus #detection #topic #twitter
Detecting offensive tweets via topical feature discovery over a large scale twitter corpus (GX, BF, LW, JIH, CPR), pp. 1980–1984.
CIKMCIKM-2012-YangZW #collaboration #incremental #predict #using
Scalable collaborative filtering using incremental update and local link prediction (XY, ZZ, KW), pp. 2371–2374.
ICMLICML-2012-GoodfellowCB #learning
Large-Scale Feature Learning With Spike-and-Slab Sparse Coding (IJG, ACC, YB), p. 180.
ICMLICML-2012-HoiWZJW #algorithm #bound #kernel #learning #online #performance
Fast Bounded Online Gradient Descent Algorithms for Scalable Kernel-Based Online Learning (SCHH, JW, PZ, RJ, PW), p. 141.
ICMLICML-2012-KoS #modelling
Large Scale Variational Bayesian Inference for Structured Scale Mixture Models (YJK, MWS), p. 229.
ICMLICML-2012-LeRMDCCDN #learning #using
Building high-level features using large scale unsupervised learning (QVL, MR, RM, MD, GC, KC, JD, AYN), p. 69.
ICMLICML-2012-ScherrerHTH #algorithm #coordination #problem
Scaling Up Coordinate Descent Algorithms for Large ℓ1 Regularization Problems (CS, MH, AT, DH), p. 50.
ICPRICPR-2012-AyvaciJLCS #self #video
Video upscaling via spatio-temporal self-similarity (AA, HJ, ZL, SC, SS), pp. 2190–2193.
ICPRICPR-2012-BespalovQBS #classification #image #using
Large-scale image classification using supervised spatial encoder (DB, YQ, BB, AS), pp. 581–584.
ICPRICPR-2012-ChenYY #analysis #null #recognition
Large margin null space discriminant analysis with applications to face recognition (XC, JY, WY), pp. 1679–1682.
ICPRICPR-2012-FausserS #clustering #dataset #kernel
Clustering large datasets with kernel methods (SF, FS), pp. 501–504.
ICPRICPR-2012-LiuCSTN #learning #multi #performance #problem #recursion
Recursive NMF: Efficient label tree learning for large multi-class problems (LL, PMC, SS, PNT, AN), pp. 2148–2151.
ICPRICPR-2012-SahayR #3d #modelling #re-engineering #self
Harnessing self-similarity for reconstruction of large missing regions in 3D Models (PS, ANR), pp. 101–104.
ICPRICPR-2012-SjobergKIL #classification #concept #detection #linear #realtime #visual notation
Real-time large-scale visual concept detection with linear classifiers (MS, MK, SI, JL), pp. 421–424.
ICPRICPR-2012-SunLI #quality
A pixel-domain mode-mapping based SVC-to-AVC transcoder with coarse grain quality scalability (LS, ZL, TI), pp. 939–942.
ICPRICPR-2012-VidalCMST #database #image
Sorted dominant local color for searching large and heterogeneous image databases (MLAV, JMBC, ESdM, ASdS, RdST), pp. 1960–1963.
ICPRICPR-2012-ZhangFWZJ #image #using
Scalable image co-segmentation using color and covariance features (SZ, WF, LW, JZ, JJ), pp. 3708–3711.
KDDKDD-2012-ChauAVTF #graph #interactive #named #visualisation
TourViz: interactive visualization of connection pathways in large graphs (DHC, LA, JV, HT, CF), pp. 1516–1519.
KDDKDD-2012-HalawiDGK #constraints #learning #word
Large-scale learning of word relatedness with constraints (GH, GD, EG, YK), pp. 1406–1414.
KDDKDD-2012-HendersonGETBAKFL #graph #mining #named
RolX: structural role extraction & mining in large graphs (KH, BG, TER, HT, SB, LA, DK, CF, LL), pp. 1231–1239.
KDDKDD-2012-KangPHF #algorithm #analysis #named
GigaTensor: scaling tensor analysis up by 100 times — algorithms and discoveries (UK, EEP, AH, CF), pp. 316–324.
KDDKDD-2012-KuksaP #evaluation #kernel #performance #sequence
Efficient evaluation of large sequence kernels (PPK, VP), pp. 759–767.
KDDKDD-2012-LiuBEWFZ #comparison #mining
Mining large-scale, sparse GPS traces for map inference: comparison of approaches (XL, JB, JE, YW, GF, YZ), pp. 669–677.
KDDKDD-2012-Posse #lessons learnt #network #recommendation #social
Key lessons learned building recommender systems for large-scale social networks (CP), p. 587.
KDDKDD-2012-SindhwaniG #distributed #learning #taxonomy
Large-scale distributed non-negative sparse coding and sparse dictionary learning (VS, AG), pp. 489–497.
KDDKDD-2012-StantonK #clustering #distributed #graph #streaming
Streaming graph partitioning for large distributed graphs (IS, GK), pp. 1222–1230.
KDDKDD-2012-XingLHCHLLMZ #behaviour #chat #detection #online #video
Scalable misbehavior detection in online video chat services (XX, YLL, SH, HC, RH, QL, XL, SM, YZ), pp. 552–560.
KMISKMIS-2012-MarsanCE #analysis #behaviour #enterprise #framework #information management #platform #tool support #using
Factors Influencing the Behavioral Intention of using Enterprise 2.0 Tools as a Knowledge Management Platform — An Analysis of the UTAUT Model in an Large Real Estate Company (BM, LC, EE), pp. 281–284.
RecSysRecSys-2012-BellufXG #case study #online #personalisation #recommendation
Case study on the business value impact of personalized recommendations on a large online retailer (TB, LX, RG), pp. 277–280.
RecSysRecSys-2012-SchelterBM #pipes and filters #similarity
Scalable similarity-based neighborhood methods with MapReduce (SS, CB, VM), pp. 163–170.
SEKESEKE-2012-Collazo-MojicaSEB #constraints #monitoring
Cloud Application Resource Mapping and Scaling Based on Monitoring of QoS Constraints (XJCM, SMS, JE, RMB), pp. 88–93.
SIGIRSIGIR-2012-GaoWL #graph #information retrieval #learning #mining
Large-scale graph mining and learning for information retrieval (BG, TW, TYL), pp. 1194–1195.
SIGIRSIGIR-2012-KongLG #image #retrieval
Manhattan hashing for large-scale image retrieval (WK, WJL, MG), pp. 45–54.
SIGIRSIGIR-2012-LeiCCIH #layout #retrieval
Where is who: large-scale photo retrieval by facial attributes and canvas layout (YHL, YYC, BCC, LI, WHH), pp. 701–710.
SIGIRSIGIR-2012-Najork #detection #web
Detecting quilted web pages at scale (MN), pp. 385–394.
SIGIRSIGIR-2012-SeverynM #learning #ranking
Structural relationships for large-scale learning of answer re-ranking (AS, AM), pp. 741–750.
SIGIRSIGIR-2012-ShenPWY #concept #modelling #music
Modeling concept dynamics for large scale music search (JS, HP, MW, SY), pp. 455–464.
SIGIRSIGIR-2012-WangCXL #matrix #modelling #topic
Group matrix factorization for scalable topic modeling (QW, ZC, JX, HL), pp. 375–384.
SIGIRSIGIR-2012-XiaWHJ #image #kernel #multi #retrieval
Boosting multi-kernel locality-sensitive hashing for scalable image retrieval (HX, PW, SCHH, RJ), pp. 55–64.
SIGIRSIGIR-2012-YuLZZL #estimation #network #performance #towards
SimFusion+: extending simfusion towards efficient estimation on large and dynamic networks (WY, XL, WZ, YZ, JL), pp. 365–374.
MODELSMoDELS-2012-KuhnMT #case study #development #modelling
An Exploratory Study of Forces and Frictions Affecting Large-Scale Model-Driven Development (AK, GCM, CAT), pp. 352–367.
MODELSMoDELS-2012-ScheidgenZFK #automation #modelling
Automated and Transparent Model Fragmentation for Persisting Large Models (MS, AZ, JF, THK), pp. 102–118.
SPLCSPLC-2012-JohansenHF #algorithm #array #feature model #generative #modelling
An algorithm for generating t-wise covering arrays from large feature models (MFJ, ØH, FF), pp. 46–55.
TOOLSTOOLS-EUROPE-J-2011-LavalFVD12 #performance #ranking #retrieval
Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems (JL, JRF, PV, SD), pp. 1–24.
ECOOPECOOP-2012-DeD #analysis #java #pointer
Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates (AD, DD), pp. 665–687.
ECOOPECOOP-2012-GudkaHE #library
Lock Inference in the Presence of Large Libraries (KG, TH, SE), pp. 308–332.
OOPSLAOOPSLA-2012-SiddiquiK #analysis #execution #symbolic computation #using
Scaling symbolic execution using ranged analysis (JHS, SK), pp. 523–536.
PLDIPLDI-2012-RamanZSVY #concurrent #detection #parallel #precise
Scalable and precise dynamic datarace detection for structured parallelism (RR, JZ, VS, MTV, EY), pp. 531–542.
ASEASE-2012-YuanG #approach #clone detection #detection #named
Boreas: an accurate and scalable token-based approach to code clone detection (YY, YG), pp. 286–289.
FSEFSE-2012-ChandramohanTS #behaviour #clustering #modelling
Scalable malware clustering through coarse-grained behavior modeling (MC, HBKT, LKS), p. 27.
FSEFSE-2012-Torlak #generative #modelling #multi #testing
Scalable test data generation from multidimensional models (ET), p. 36.
ICSEICSE-2012-AndronickJKKSZZ #perspective #process #verification
Large-scale formal verification in practice: A process perspective (JA, DRJ, GK, RK, MS, HZ, LZ), pp. 1002–1011.
ICSEICSE-2012-CaiC #concurrent #detection #named
MagicFuzzer: Scalable deadlock detection for large-scale applications (YC, WKC), pp. 606–616.
ICSEICSE-2012-NaganoNKAHUF #mining #repository #using
Using the GPGPU for scaling up Mining Software Repositories (RN, HN, YK, BA, KH, NU, AF), pp. 1435–1436.
ICSEICSE-2012-Penix #automation #in the cloud #testing
Large-scale test automation in the cloud (JP), p. 1122.
ICSEICSE-2012-PloomSG #migration #process
Methodology for migration of long running process instances in a global large scale BPM environment in Credit Suisse’s SOA landscape (TP, SS, AG), pp. 977–986.
ICSEICSE-2012-ShahzadSL #analysis #lifecycle
A large scale exploratory analysis of software vulnerability life cycles (MS, MZS, AXL), pp. 771–781.
ICSEICSE-2012-SillittiSV #case study #comprehension #developer #industrial #programming
Understanding the impact of Pair Programming on developers attention: A case study on a large industrial experimentation (AS, GS, JV), pp. 1094–1101.
SACSAC-2012-DestefanisTCM #analysis #anti #java
An analysis of anti-micro-patterns effects on fault-proneness in large Java systems (GD, RT, GC, MM), pp. 1251–1253.
SACSAC-2012-KangJC #3d #using #video
Scalable depth map coding for 3D video using contour information (JK, HJ, KC), pp. 1028–1029.
SACSAC-2012-KhucSRR #analysis #distributed #sentiment #towards #twitter
Towards building large-scale distributed systems for twitter sentiment analysis (VNK, CS, RR, JR), pp. 459–464.
SACSAC-2012-KorahSS #framework #multi #realtime
Multi-agent framework for real-time processing of large and dynamic search spaces (JK, EES, ESJ), pp. 755–762.
SACSAC-2012-LassaigneP #approximate #markov #process #verification
Approximate planning and verification for large markov decision processes (RL, SP), pp. 1314–1319.
SACSAC-2012-LeitnerSHID #middleware #named #novel
CloudScale: a novel middleware for building transparently scaling cloud applications (PL, BS, WH, CI, SD), pp. 434–440.
SACSAC-2012-ReichertKBB #personalisation #process #visualisation
Enabling personalized visualization of large business processes through parameterizable views (MR, JK, RB, TB), pp. 1653–1660.
ASPLOSASPLOS-2012-ClementsKZ #using
Scalable address spaces using RCU balanced trees (ATC, MFK, NZ), pp. 199–210.
CASECASE-2012-FeiMAL #approach #automaton #finite
A symbolic approach to large-scale discrete event systems modeled as finite automata with variables (ZF, SM, , BL), pp. 502–507.
CASECASE-2012-YuLCCJ #automation
Automated robotic service in large-scale exhibition environments (WY, YCL, SC, HC, JJ), pp. 1156–1161.
DACDAC-2012-ChenZCZX #mobile #streaming #video
Quality-retaining OLED dynamic voltage scaling for video streaming applications on mobile devices (XC, JZ, YC, MZ, CJX), pp. 1000–1005.
DACDAC-2012-JiangZZY #embedded #multi #performance
Constructing large and fast multi-level cell STT-MRAM based cache for embedded processors (LJ, BZ, YZ, JY), pp. 907–912.
DACDAC-2012-LiuH #network #simulation
Dynamic river network simulation at large scale (FL, BRH), pp. 723–728.
DACDAC-2012-QiuM #question
Can pin access limit the footprint scaling? (XQ, MMS), pp. 1100–1106.
DACDAC-2012-WenZCWX #analysis #named #performance #reliability #statistics
PS3-RAM: a fast portable and scalable statistical STT-RAM reliability analysis method (WW, YZ, YC, YW, YX), pp. 1191–1196.
DATEDATE-2012-BartoliniSFCB #energy #performance
Quantifying the impact of frequency scaling on the energy efficiency of the single-chip cloud computer (AB, MS, JNF, AKC, LB), pp. 181–186.
DATEDATE-2012-BeckerDFMPV #embedded #evolution #modelling #named #verification
MOUSSE: Scaling modelling and verification to complex Heterogeneous Embedded Systems evolution (MB, GBD, FF, WM, GP, SV), pp. 296–299.
DATEDATE-2012-BeniniFFM #composition #ecosystem #embedded #named
P2012: Building an ecosystem for a scalable, modular and high-efficiency embedded computing accelerator (LB, EF, DF, DM), pp. 983–987.
DATEDATE-2012-RayB #verification
Scalable progress verification in credit-based flow-control systems (SR, RKB), pp. 905–910.
DATEDATE-2012-SchoenmakerMSBTJ #simulation
Large signal simulation of integrated inductors on semi-conducting substrates (WS, MM, BDS, SB, CT, RJ), pp. 1221–1226.
DATEDATE-2012-SuriBE #approach #multi #problem
A scalable GPU-based approach to accelerate the multiple-choice knapsack problem (BS, UDB, PE), pp. 1126–1129.
HPCAHPCA-2012-AhnCK #approach #architecture #network
Network within a network approach to create a scalable high-radix router microarchitecture (JHA, SC, JK), pp. 455–466.
HPCAHPCA-2012-NegiGAGS #hardware #lazy evaluation #memory management #named #transaction
π-TM: Pessimistic invalidation for scalable lazy hardware transactional memory (AN, JRTG, MEA, JMG, PS), pp. 141–152.
HPCAHPCA-2012-SanchezK #encoding #flexibility #named #set
SCD: A scalable coherence directory with flexible sharer set encoding (DS, CK), pp. 129–140.
HPDCHPDC-2012-HefeedaGA #approximate #clustering #dataset #distributed
Distributed approximate spectral clustering for large-scale datasets (MH, FG, WAA), pp. 223–234.
HPDCHPDC-2012-SchendelPJBBGLLKCKRS #hybrid #optimisation #parallel
ISOBAR hybrid compression-I/O interleaving for large-scale parallel I/O optimization (ERS, SVP, JJ, DABI, ZG, SL, QL, HK, JC, SK, RBR, NFS), pp. 61–72.
HPDCHPDC-2012-UenoS #benchmark #graph #metric
Highly scalable graph search for the Graph500 benchmark (KU, TS), pp. 149–160.
ISMMISMM-2012-IyengarGWM #concurrent #parallel
Scalable concurrent and parallel mark (BI, EFG, MW, KM), pp. 61–72.
LCTESLCTES-2012-HashemiFGE #embedded #named #streaming
FORMLESS: scalable utilization of embedded manycores in streaming applications (MH, MHF, SG, CE), pp. 71–78.
OSDIOSDI-2012-HanMCR #interface #named #network #programming
MegaPipe: A New Programming Interface for Scalable Network I/O (SH, SM, BGC, SR), pp. 135–148.
OSDIOSDI-2012-KyrolaBG #graph #named
GraphChi: Large-Scale Graph Computation on Just a PC (AK, GEB, CG), pp. 31–46.
PDPPDP-2012-DavidovicQ #problem #reduction #symmetry
Applying OOC Techniques in the Reduction to Condensed Form for Very Large Symmetric Eigenproblems on GPUs (DD, ESQO), pp. 442–449.
PDPPDP-2012-RungerS #interactive #manycore #parallel #simulation
Interaction List Compression in Large Parallel Particle Simulations on Multicore Systems (GR, MS), pp. 190–197.
PPoPPPPoPP-2012-DinhAJGMR #debugging #parallel #statistics
Scalable parallel debugging with statistical assertions (MND, DA, CJ, AG, BM, LDR), pp. 311–312.
PPoPPPPoPP-2012-HuynhHWG #framework #multi #streaming
Scalable framework for mapping streaming applications onto multi-GPU systems (HPH, AH, WFW, RSMG), pp. 1–10.
PPoPPPPoPP-2012-MerrillGG #gpu #graph #traversal
Scalable GPU graph traversal (DM, MG, ASG), pp. 117–128.
PPoPPPPoPP-2012-NobariCKB #parallel
Scalable parallel minimum spanning forest computation (SN, TTC, PK, SB), pp. 205–214.
PPoPPPPoPP-2012-TaoBB #development #gpu #kernel #using
Using GPU’s to accelerate stencil-based computation kernels for the development of large scale scientific applications on heterogeneous systems (JT, MB, SRB), pp. 287–288.
STOCSTOC-2012-AlonMS #graph
Nearly complete graphs decomposable into large induced matchings and their applications (NA, AM, BS), pp. 1079–1090.
CAVCAV-2012-Venet #analysis #difference #invariant #linear
The Gauge Domain: Scalable Analysis of Linear Inequality Invariants (AV), pp. 139–154.
ICSTICST-2012-JonssonBSE #automation #towards #using
Towards Automated Anomaly Report Assignment in Large Complex Systems Using Stacked Generalization (LJ, DB, KS, SE), pp. 437–446.
ICSTICST-2012-KimKR #approach #distributed #empirical #evaluation #testing
A Scalable Distributed Concolic Testing Approach: An Empirical Evaluation (MK, YK, GR), pp. 340–349.
ICSTICST-2012-Nguyen #comprehension #detection #performance #using
Using Control Charts for Detecting and Understanding Performance Regressions in Large Software (THDN), pp. 491–494.
ICSTICST-2012-ZamanAH #analysis #empirical #performance
A Large Scale Empirical Study on User-Centric Performance Analysis (SZ, BA, AEH), pp. 410–419.
IJCARIJCAR-2012-KuhlweinLTUH #evaluation #overview
Overview and Evaluation of Premise Selection Techniques for Large Theory Mathematics (DK, TvL, ET, JU, TH), pp. 378–392.
ICSTSAT-2012-BloomGHSSS #framework #game studies #named #parallel #satisfiability
SatX10: A Scalable Plug&Play Parallel SAT Framework — (BB, DG, BH, AS, HS, VAS), pp. 463–468.
ICSTSAT-2012-HyvarinenM #design #parallel #satisfiability
Designing Scalable Parallel SAT Solvers (AEJH, NM), pp. 214–227.
WICSAWICSA-2011-HarrisonC #architecture
Attempting to Understand the Progress of Software Architecture Decision-Making on Large Australian Defence Projects (TCH, APC), pp. 42–45.
ICDARICDAR-2011-BaeXE #comprehension #documentation
Facilitating Understanding of Large Document Collections (JHB, WX, ME), pp. 1334–1338.
ICDARICDAR-2011-ChenZN #generative #online #recognition
Effects of Generating a Large Amount of Artificial Patterns for On-line Handwritten Japanese Character Recognition (BC, BZ, MN), pp. 663–667.
ICDARICDAR-2011-SpasojevicP #clustering #similarity
Large Scale Page-Based Book Similarity Clustering (NS, GP), pp. 119–125.
ICDARICDAR-2011-ZhuN11a #classification #online #recognition
A Coarse Classifier Construction Method from a Large Number of Basic Recognizers for On-line Recognition of Handwritten Japanese Characters (BZ, MN), pp. 1090–1094.
SIGMODSIGMOD-2011-DongS #detection
Large-scale copy detection (XLD, DS), pp. 1205–1208.
SIGMODSIGMOD-2011-KhanLYGCT #graph #network #performance
Neighborhood based fast graph search in large networks (AK, NL, XY, ZG, SC, ST), pp. 901–912.
SIGMODSIGMOD-2011-KonstantinidisA #approach #graph #query
Scalable query rewriting: a graph-based approach (GK, JLA), pp. 97–108.
SIGMODSIGMOD-2011-LiMDMS #framework #pipes and filters #platform #using
A platform for scalable one-pass analytics using MapReduce (BL, EM, YD, AM, PJS), pp. 985–996.
SIGMODSIGMOD-2011-LinACOW #framework #named #pipes and filters
Llama: leveraging columnar storage for scalable join processing in the MapReduce framework (YL, DA, CC, BCO, SW), pp. 961–972.
SIGMODSIGMOD-2011-SatuluriPR #clustering #graph
Local graph sparsification for scalable clustering (VS, SP, YR), pp. 721–732.
TPDLTPDL-2011-EckertP #classification #library
An Application to Support Reclassification of Large Libraries (KE, MP), pp. 461–464.
TPDLTPDL-2011-WongCRCX #interactive #library #named #visualisation
INVISQUE: Technology and Methodologies for Interactive Information Visualization and Analytics in Large Library Collections (BLWW, S(C, CR, RC, KX), pp. 227–235.
VLDBVLDB-2011-BeyerEGBEKOS #data analysis #named #scripting language #semistructured data
Jaql: A Scripting Language for Large Scale Semistructured Data Analysis (KSB, VE, RG, AB, MYE, CCK, , EJS), pp. 1272–1283.
VLDBVLDB-2011-DalviKS #automation #web
Automatic Wrappers for Large Scale Web Extraction (NND, RK, MAS), pp. 219–230.
VLDBVLDB-2011-DashPA #interactive #named
CoPhy: A Scalable, Portable, and Interactive Index Advisor for Large Workloads (DD, NP, AA), pp. 362–372.
VLDBVLDB-2011-FurcheGGSS #named #web
OXPath: A Language for Scalable, Memory-efficient Data Extraction from Web Applications (TF, GG, GG, CS, AJS), pp. 1016–1027.
VLDBVLDB-2011-HuangAR #graph #query #rdf
Scalable SPARQL Querying of Large RDF Graphs (JH, DJA, KR), pp. 1123–1134.
VLDBVLDB-2011-NiuRDS #logic #markov #named #network #statistics #using
Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS (FN, CR, AD, JWS), pp. 373–384.
VLDBVLDB-2011-PansareBJC #online #pipes and filters
Online Aggregation for Large MapReduce Jobs (NP, VRB, CJ, TC), pp. 1135–1145.
VLDBVLDB-2011-RaoST #consistency #using
Using Paxos to Build a Scalable, Consistent, and Highly Available Datastore (JR, EJS, ST), pp. 243–254.
VLDBVLDB-2011-RastogiDG
Large-Scale Collective Entity Matching (VR, NND, MNG), pp. 208–218.
VLDBVLDB-2011-YuanWWC #graph #nondeterminism #performance
Efficient Subgraph Search over Large Uncertain Graphs (YY, GW, HW, LC), pp. 876–886.
VLDBVLDB-2011-ZhuQLYHY #mining #network
Mining Top-K Large Structural Patterns in a Massive Network (FZ, QQ, DL, XY, JH, PSY), pp. 807–818.
VLDBVLDB-2012-BarskyKWH11 #correlation #dataset #mining #taxonomy
Mining Flipping Correlations from Large Datasets with Taxonomies (MB, SK, TW, JH), pp. 370–381.
VLDBVLDB-2012-GaoJZYJW11 #approach #graph #relational
Relational Approach for Shortest Path Discovery over Large Graphs (JG, RJ, JZ, JXY, XJ, TW), pp. 358–369.
VLDBVLDB-2012-JestesYL11 #pipes and filters
Building Wavelet Histograms on Large Data in MapReduce (JJ, KY, FL), pp. 109–120.
ITiCSEITiCSE-2011-VihavainenPLK
Extreme apprenticeship method: key practices and upward scalability (AV, MP, ML, JK), pp. 273–277.
SIGITESIGITE-2011-KurhilaV #programming #tool support
Management, structures and tools to scale up personal advising in large programming courses (JK, AV), pp. 3–8.
CSMRCSMR-2011-Borg #evaluation #traceability
In Vivo Evaluation of Large-Scale IR-Based Traceability Recovery (MB), pp. 365–368.
ICPCICPC-2011-AlawnehH #named #performance
MTF: A Scalable Exchange Format for Traces of High Performance Computing Systems (LA, AHL), pp. 181–184.
ICPCICPC-2011-Cordy #clone detection #detection #incremental #similarity #using
Exploring Large-Scale System Similarity Using Incremental Clone Detection and Live Scatterplots (JRC), pp. 151–160.
ICPCICPC-2011-FabryKD #named #visualisation
AspectMaps: A Scalable Visualization of Join Point Shadows (JF, AK, SD), pp. 121–130.
ICPCICPC-2011-Medini #automation #concept #execution #mining
Scalable Automatic Concept Mining from Execution Traces (SM), pp. 238–241.
ICPCICPC-2011-PanchenkoKPZ #database #precise #query #source code #using
Precise and Scalable Querying of Syntactical Source Code Patterns Using Sample Code Snippets and a Database (OP, JK, HP, AZ), pp. 41–50.
ICSMEICSM-2011-JiresalCN #cobol #detection #precise #source code
Precise detection of un-initialized variables in large, real-life COBOL programs in presence of unrealizable paths (RJ, AC, RN), pp. 448–456.
ICSMEICSM-2011-KobayashiMIHKY #fault #impact analysis #named #predict
ImpactScale: Quantifying change impact to predict faults in large software systems (KK, AM, KI, YH, MK, TY), pp. 43–52.
WCREWCRE-2011-AbdeenDS #composition #legacy #metric #object-oriented
Modularization Metrics: Assessing Package Organization in Legacy Large Object-Oriented Software (HA, SD, HAS), pp. 394–398.
WCREWCRE-2011-ShangJAHGNF #case study #evolution #execution
An Exploratory Study of the Evolution of Communicated Information about the Execution of Large Software Systems (WS, ZMJ, BA, AEH, MWG, MNN, PF), pp. 335–344.
WCREWCRE-2011-UddinRSH #detection #effectiveness #on the
On the Effectiveness of Simhash for Detecting Near-Miss Clones in Large Scale Software Systems (MSU, CKR, KAS, AH), pp. 13–22.
DiGRADiGRA-2011-SzymanezykDD #game studies #social
From Individual Characters to Large Crowds: Augmenting the Believability of Open-World Games through Exploring Social Emotion in Pedestrian Groups (OS, PD, TD).
CHICHI-2011-BeyerAMSIKSH #behaviour #interactive
Audience behavior around large interactive cylindrical screens (GB, FA, JM, AS, KI, SK, MS, IH), pp. 1021–1030.
CHICHI-2011-BragdonK #gesture
Gesture select: : acquiring remote targets on large displays without pointing (AB, HSK), pp. 187–196.
CHICHI-2011-ChauKHF #interactive #machine learning #named #network
Apolo: making sense of large network data by combining rich user interaction and machine learning (DHC, AK, JIH, CF), pp. 167–176.
CHICHI-2011-CostaCS #collaboration #coordination #distributed #evolution #generative #tool support
The scale and evolution of coordination needs in large-scale distributed projects: implications for the future generation of collaborative tools (JMdRC, MC, CRBdS), pp. 3151–3160.
CHICHI-2011-TuiteSHTP #game studies #image #named
PhotoCity: training experts at large-scale image acquisition through a competitive game (KT, NS, DYH, NT, ZP), pp. 1383–1392.
CSCWCSCW-2011-AlvesF #adaptation #chat #consistency #multi #named #performance #requirements
ReConMUC: adaptable consistency requirements for efficient large-scale multi-user chat (PA, PF), pp. 553–562.
CSCWCSCW-2011-BoltonKV #privacy
Privacy and sharing information on spherical and large flat displays (JB, KK, RV), pp. 573–574.
CSCWCSCW-2011-HandelP #case study #experience
Working around official applications: experiences from a large engineering project (MJH, SEP), pp. 309–312.
HCIDUXU-v1-2011-HeckerB #case study #enterprise #experience #process #user interface
Scalability of UX Activities in Large Enterprises: An Experience Report from SAP AG (BH, MB), pp. 425–431.
HCIDUXU-v1-2011-RiceTW #enterprise #testing #usability
ISO 25062 Usability Test Planning for a Large Enterprise Applications Suite (SR, JT, AMW), pp. 185–192.
HCIDUXU-v2-2011-KaptanG11a #comprehension
Improving Code Reading and Comprehension on Large Displays (SNK, MG), pp. 128–134.
HCIDUXU-v2-2011-RubegniML #interactive #social #using
Talking to Strangers: Using Large Public Displays to Facilitate Social Interaction (ER, NM, ML), pp. 195–204.
HCIHCD-2011-KlineQ #network
Attribute Description Service for Large-Scale Networks (DK, JQ), pp. 519–528.
HCIHCI-DDA-2011-GaoZRMS #overview #performance #perspective #visualisation
Performance Visualization for Large-Scale Computing Systems: A Literature Review (QG, XZ, PLPR, AAM, HJS), pp. 450–460.
HCIHCI-DDA-2011-MoehrmannBSWH #image #set #usability
Improving the Usability of Hierarchical Representations for Interactively Labeling Large Image Data Sets (JM, SB, TS, GW, GH), pp. 618–627.
HCIHCI-DDA-2011-Sandnes #configuration management #framework #image
A Configurable Photo Browser Framework for Large Image Collections (FES), pp. 643–652.
HCIHCI-ITE-2011-AngeliniCCKM #gesture #interactive #multi #using
Multi-user Pointing and Gesture Interaction for Large Screen Using Infrared Emitters and Accelerometers (LA, MC, SC, OAK, EM), pp. 185–193.
HCIHCI-ITE-2011-AsanOPM #case study #design #interface
Designing a Better Morning: A Study on Large Scale Touch Interface Design (OA, MO, DP, ENHM), pp. 13–22.
HCIHCI-UA-2011-LiuS #performance
uMeeting, an Efficient Co-located Meeting System on the Large-Scale Tabletop (JL, YS), pp. 368–374.
HCIHIMI-v2-2011-TanerYNB #generative #performance
An Efficient and Scalable Meeting Minutes Generation and Presentation Technique (BT, CY, AON, SB), pp. 345–352.
VISSOFTVISSOFT-2011-BroeksemaT #migration #visual notation
Visual support for porting large code bases (BB, ACT), pp. 1–8.
VISSOFTVISSOFT-2011-MaleticMNCSR #named #tool support #visualisation
MosaiCode: Visualizing large scale software: A tool demonstration (JIM, DJM, CDN, MLC, AS, BPR), pp. 1–4.
ICEISICEIS-v4-2011-ZhouZ #case study
Study on the Long-term Incentive Mechanism of the Large-scale Dredging Project (BZ, ZZ), pp. 574–580.
CIKMCIKM-2011-Baumann #array
Large-scale array analytics: taming the data tsunami (PB), pp. 2599–2600.
CIKMCIKM-2011-Bradford #implementation #semantics
Implementation techniques for large-scale latent semantic indexing applications (RBB), pp. 339–344.
CIKMCIKM-2011-CaiZLZ #classification #semantics #wiki
Large-scale question classification in cQA by leveraging Wikipedia semantic knowledge (LC, GZ, KL, JZ), pp. 1321–1330.
CIKMCIKM-2011-ChangYQZW #network
Finding information nebula over large networks (LC, JXY, LQ, YZ, HW), pp. 1465–1474.
CIKMCIKM-2011-FlorezD #similarity
Scalable similarity search of timeseries with variable dimensionality (OUF, CED), pp. 2545–2548.
CIKMCIKM-2011-JatowtY
Extracting collective expectations about the future from large text collections (AJ, CmAY), pp. 1259–1264.
CIKMCIKM-2011-LauLBW #learning #sentiment #web
Leveraging web 2.0 data for scalable semi-supervised learning of domain-specific sentiment lexicons (RYKL, CLL, PB, KFW), pp. 2457–2460.
CIKMCIKM-2011-LeeLH
Scalable entity matching computation with materialization (SL, JL, SwH), pp. 2353–2356.
CIKMCIKM-2011-LiuT #behaviour #social
Large-scale behavioral targeting with a social twist (KL, LT), pp. 1815–1824.
CIKMCIKM-2011-MullerAGS #clustering
Scalable density-based subspace clustering (EM, IA, SG, TS), pp. 1077–1086.
CIKMCIKM-2011-SantosMP #information retrieval
Large-scale information retrieval experimentation with terrier (RLTS, RM, VP), pp. 2601–2602.
CIKMCIKM-2011-ShastriDRW #multi #named
MTopS: scalable processing of continuous top-k multi-query workloads (AS, DY, EAR, MOW), pp. 1107–1116.
CIKMCIKM-2011-TomasATV #named #query
RoSeS: a continuous query processor for large-scale RSS filtering and aggregation (JCT, BA, NT, DV), pp. 2549–2552.
CIKMCIKM-2011-TretyakovAGVD #estimation #graph #performance
Fast fully dynamic landmark-based estimation of shortest path distances in very large graphs (KT, AAC, LGB, JV, MD), pp. 1785–1794.
CIKMCIKM-2011-WeilerMM #ambiguity #approach #library #named
Authormagic: an approach to author disambiguation in large-scale digital libraries (HW, KMW, SM), pp. 2293–2296.
CIKMCIKM-2011-XieY #graph #named #performance
CP-index: on the efficient indexing of large graphs (YX, PSY), pp. 1795–1804.
CIKMCIKM-2011-XuZYCXZ #constraints #graph #reachability
Answering label-constraint reachability in large graphs (KX, LZ, JXY, LC, YX, DZ), pp. 1595–1600.
CIKMCIKM-2011-YalnizCM #detection
Partial duplicate detection for large book collections (IZY, EFC, RM), pp. 469–474.
CIKMCIKM-2011-YeungJ #how #mining #towards
Studying how the past is remembered: towards computational history through large scale text mining (CmAY, AJ), pp. 1231–1240.
CIKMCIKM-2011-ZhouPW #constraints #graph #keyword #performance
Efficient association discovery with keyword-based constraints on large graph data (MZ, YP, YW), pp. 2441–2444.
CIKMCIKM-2011-ZhuQYKL #graph #performance #quality
High efficiency and quality: large graphs matching (YZ, LQ, JXY, YK, XL), pp. 1755–1764.
ECIRECIR-2011-ArampatzisZC #database #image #multimodal #retrieval
Dynamic Two-Stage Image Retrieval from Large Multimodal Databases (AA, KZ, SAC), pp. 326–337.
ECIRECIR-2011-ChilukaAP #approach #predict #recommendation
A Link Prediction Approach to Recommendations in Large-Scale User-Generated Content Systems (NC, NA, JAP), pp. 189–200.
ECIRECIR-2011-Gatterbauer #information management
Rules of Thumb for Information Acquisition from Large and Redundant Data (WG), pp. 479–490.
ECIRECIR-2011-KurstenE #component #evaluation
A Large-Scale System Evaluation on Component-Level (JK, ME), pp. 679–682.
ECIRECIR-2011-OhCM #classification #modelling #taxonomy #using
Text Classification for a Large-Scale Taxonomy Using Dynamically Mixed Local and Global Models for a Node (HSO, YC, SHM), pp. 7–18.
ICMLICML-2011-CossalterYZ #adaptation #approximate #kernel #predict
Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction (MC, RY, LZ), pp. 409–416.
ICMLICML-2011-DauphinGB #learning #re-engineering
Large-Scale Learning of Embeddings with Reconstruction Sampling (YD, XG, YB), pp. 945–952.
ICMLICML-2011-GlorotBB #adaptation #approach #classification #learning #sentiment
Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach (XG, AB, YB), pp. 513–520.
ICMLICML-2011-HuWC #coordination #kernel #learning #named #parametricity #using
BCDNPKL: Scalable Non-Parametric Kernel Learning Using Block Coordinate Descent (EH, BW, SC), pp. 209–216.
ICMLICML-2011-PazisP #set
Generalized Value Functions for Large Action Sets (JP, RP), pp. 1185–1192.
ICMLICML-2011-Shalev-ShwartzGS #constraints #rank
Large-Scale Convex Minimization with a Low-Rank Constraint (SSS, AG, OS), pp. 329–336.
ICMLICML-2011-SuSM #classification #multi #naive bayes #using
Large Scale Text Classification using Semisupervised Multinomial Naive Bayes (JS, JSS, SM), pp. 97–104.
KDDKDD-2011-AhmedLAJS #behaviour #distributed
Scalable distributed inference of dynamic user interests for behavioral targeting (AA, YL, MA, VJ, AJS), pp. 114–122.
KDDKDD-2011-Boyd #distributed #embedded #optimisation #realtime
Convex optimization: from embedded real-time to large-scale distributed (SB), p. 1.
KDDKDD-2011-ChangR #convergence #linear #memory management #modelling #performance
Selective block minimization for faster convergence of limited memory large-scale linear models (KWC, DR), pp. 699–707.
KDDKDD-2011-ChauKHF #graph #interactive #machine learning #named #visualisation
Apolo: interactive large graph sensemaking by combining machine learning and visualization (DHC, AK, JIH, CF), pp. 739–742.
KDDKDD-2011-ChittaJHJ #approximate #clustering #kernel
Approximate kernel k-means: solution to large scale kernel clustering (RC, RJ, TCH, AKJ), pp. 895–903.
KDDKDD-2011-CordeiroTTLKF #clustering #dataset #multi #pipes and filters
Clustering very large multi-dimensional datasets with MapReduce (RLFC, CTJ, AJMT, JL, UK, CF), pp. 690–698.
KDDKDD-2011-GaoLWWL #graph #metadata #ranking
Semi-supervised ranking on very large graphs with rich metadata (BG, TYL, WW, TW, HL), pp. 96–104.
KDDKDD-2011-GemullaNHS #distributed #matrix #probability
Large-scale matrix factorization with distributed stochastic gradient descent (RG, EN, PJH, YS), pp. 69–77.
KDDKDD-2011-Inchiosa #data mining #mining #using
Accelerating large-scale data mining using in-database analytics (MEI), p. 778.
KDDKDD-2011-KangTSLF #graph #named
GBASE: a scalable and general graph management system (UK, HT, JS, CYL, CF), pp. 1091–1099.
KDDKDD-2011-KashyapK
Scalable kNN search on vertically stored time series (SK, PK), pp. 1334–1342.
KDDKDD-2011-MalbasaV
Spatially regularized logistic regression for disease mapping on large moving populations (VM, SV), pp. 1352–1360.
KDDKDD-2011-TongHWKL #graph #optimisation #ranking
Diversified ranking on large graphs: an optimization viewpoint (HT, JH, ZW, RK, CYL), pp. 1028–1036.
KDDKDD-2011-WangDCV #adaptation #classification #multi
Trading representability for scalability: adaptive multi-hyperplane machine for nonlinear classification (ZW, ND, KC, SV), pp. 24–32.
KDDKDD-2011-ZhangHLSL #approach #learning #multi
Multi-view transfer learning with a large margin approach (DZ, JH, YL, LS, RDL), pp. 1208–1216.
KDIRKDIR-2011-Jean-LouisBFD #approach
A Weakly Supervised Approach for Large-scale Relation Extraction (LJL, RB, OF, AD), pp. 94–103.
MLDMMLDM-2011-ArmstrongD #database
Unsupervised Discovery of Motifs under Amplitude Scaling and Shifting in Time Series Databases (TA, ED), pp. 539–552.
SEKESEKE-2011-QuattroneFMC #folksonomy #similarity
Measuring Similarity in Large-scale Folksonomies (GQ, EF, PDM, LC), pp. 385–391.
SEKESEKE-2011-XueJYPZ #industrial #variability
Scalability of Variability Management: An Example of Industrial Practice and Some Improvements (YX, SJ, PY, XP, WZ), pp. 705–710.
SIGIRSIGIR-2011-JethavaCBBD #identification #multi #using
Scalable multi-dimensional user intent identification using tree structured distributions (VJ, LCB, RABY, CB, DPD), pp. 395–404.
SIGIRSIGIR-2011-KanoulasSMPA #algorithm #ranking #set
A large-scale study of the effect of training set characteristics over learning-to-rank algorithms (EK, SS, PM, VP, JAA), pp. 1243–1244.
SIGIRSIGIR-2011-LagunA #interactive #named #user study #web
ViewSer: enabling large-scale remote user studies of web search examination and interaction (DL, EA), pp. 365–374.
SIGIRSIGIR-2011-LeeHWHS #dataset #graph #image #learning #multi #pipes and filters #using
Multi-layer graph-based semi-supervised learning for large-scale image datasets using mapreduce (WYL, LCH, GLW, WHH, YFS), pp. 1121–1122.
SIGIRSIGIR-2011-LiWLKP #named #personalisation #recommendation
SCENE: a scalable two-stage personalized news recommendation system (LL, DW, TL, DK, BP), pp. 125–134.
SIGIRSIGIR-2011-MinackSN #approach #incremental #set
Incremental diversification for very large sets: a streaming-based approach (EM, WS, WN), pp. 585–594.
SIGIRSIGIR-2011-ShiYGN #machine learning #network #recommendation #social
A large scale machine learning system for recommending heterogeneous content in social networks (YS, DY, AG, SN), pp. 1337–1338.
MODELSMoDELS-2011-Espinazo-PaganCM #approach #modelling #named
Morsa: A Scalable Approach for Persisting and Accessing Large Models (JEP, JSC, JGM), pp. 77–92.
MODELSMoDELS-2011-PalyartLOB #framework #maintenance
Improving Scalability and Maintenance of Software for High-Performance Scientific Computing by Combining MDE and Frameworks (MP, DL, IO, JMB), pp. 213–227.
SPLCSPLC-2011-SiegmundRKGAK #non-functional #predict #product line
Scalable Prediction of Non-functional Properties in Software Product Lines (NS, MR, CK, PGG, SA, SSK), pp. 160–169.
SPLCSPLC-2011-SinhaDR #development #multi #performance #product line #reduction #testing
Governance and Cost Reduction through Multi-tier Preventive Performance Tests in a Large-Scale Product Line Development (SS, TD, RR), pp. 295–302.
SPLCSPLC-2011-TischerMMK #case study #experience #product line
Experiences from a Large Scale Software Product Line Merger in the Automotive Domain (CT, AM, TM, RK), pp. 267–276.
ECOOPECOOP-2011-Meijer
A Co-relational Model of Data for Large Shared Data Banks (EM), p. 1.
ECOOPECOOP-2011-PothierT #debugging #query
Summarized Trace Indexing and Querying for Scalable Back-in-Time Debugging (GP, ÉT), pp. 558–582.
ECOOPECOOP-2011-RichardsHBV #javascript #using
The Eval That Men Do — A Large-Scale Study of the Use of Eval in JavaScript Applications (GR, CH, BB, JV), pp. 52–78.
OOPSLAOOPSLA-2011-TuronR
Scalable join patterns (AJT, CVR), pp. 575–594.
OOPSLAOOPSLA-2011-WuHIN #java #performance
Reducing trace selection footprint for large-scale Java applications without performance loss (PW, HH, HI, TN), pp. 789–804.
TOOLSTOOLS-EUROPE-2011-FalleriDLVD #performance #ranking #retrieval
Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems (JRF, SD, JL, PV, SD), pp. 260–275.
PLDIPLDI-2011-BeckmanN #composition #probability #specification #type system
Probabilistic, modular and scalable inference of typestate specifications (NEB, AVN), pp. 211–221.
PLDIPLDI-2011-LiangN #abstraction #refinement
Scaling abstraction refinement via pruning (PL, MN), pp. 590–601.
POPLPOPL-2011-CousotCL #analysis #array #automation #parametricity #segmentation
A parametric segmentation functor for fully automatic and scalable array content analysis (PC, RC, FL), pp. 105–118.
RERE-2011-BjarnasonWR #case study #communication #development #requirements
Requirements are slipping through the gaps — A case study on causes & effects of communication gaps in large-scale software development (EB, KW, BR), pp. 37–46.
RERE-2011-Regnell #evolution #mobile #problem
Large-scale feature evolution: Problems and solutions from the mobile domain (BR), p. 323.
REFSQREFSQ-2011-WnukRB #challenge #complexity #development #requirements
Scaling Up Requirements Engineering — Exploring the Challenges of Increasing Size and Complexity in Market-Driven Software Development (KW, BR, BB), pp. 54–59.
ASEASE-2011-Ganai #analysis #precise
Scalable and precise symbolic analysis for atomicity violations (MKG), pp. 123–132.
ASEASE-2011-IvancicBGSMTIM #bound #framework #named #verification
DC2: A framework for scalable, scope-bounded software verification (FI, GB, AG, SS, NM, HT, TI, YM), pp. 133–142.
ASEASE-2011-RobinsonEPAL #automation #generative #source code #testing
Scaling up automated test generation: Automatically generating maintainable regression unit tests for programs (BR, MDE, JHP, VA, NL), pp. 23–32.
ESEC-FSEESEC-FSE-2011-CifuentesKLHVBZCTH #fault #using
Static deep error checking in large system applications using parfait (CC, NK, LL, NH, MV, AB, JZ, AC, DT, CH), pp. 432–435.
ESEC-FSEESEC-FSE-2011-KimK #embedded #named #reliability #testing
SCORE: a scalable concolic testing tool for reliable embedded software (YK, MK), pp. 420–423.
ICSEICSE-2011-AdlerBRSSUZ #analysis #test coverage
Code coverage analysis in practice for large systems (YA, NB, OR, OS, NS, SU, AZ), pp. 736–745.
ICSEICSE-2011-PortNHH #case study #development #experience #mining
Experiences with text mining large collections of unstructured systems development artifacts at jpl (DP, APN, JH, LH), pp. 701–710.
ICSEICSE-2011-Zhang11a #automation
Scalable automatic linearizability checking (SJZ), pp. 1185–1187.
SACSAC-2011-CaiFU #database #recognition
Massive character recognition with a large ground-truthed database (WC, YF, SU), pp. 240–244.
SACSAC-2011-ChungPK #memory management #performance
LSTAFF*: an efficient flash translation layer for large block flash memory (TSC, DJP, JK), pp. 589–594.
SACSAC-2011-FormigaLSDT #assessment #matrix #recognition
An assessment of data matrix barcode recognition under scaling, rotation and cylindrical warping (AdAF, RDL, SJS, GD, MT), pp. 266–267.
SACSAC-2011-GroppeG #database #query #semantics #web
Parallelizing join computations of SPARQL queries for large semantic web databases (JG, SG), pp. 1681–1686.
SACSAC-2011-LammelPS #analysis #java #open source
Large-scale, AST-based API-usage analysis of open-source Java projects (RL, EP, JS), pp. 1317–1324.
SACSAC-2011-LiuWYL #modelling #protocol
Scalable CP-nets modeling for BitTorrent protocol (JL, HW, XY, JL), pp. 542–543.
SACSAC-2011-RyuKPC #assessment #quality
A web-based photo management system for large photo collections with user-customizable quality assessment (DSR, KK, SYP, HGC), pp. 1229–1236.
SLESLE-2011-BastenKV #ambiguity #detection
Ambiguity Detection: Scaling to Scannerless (BB, PK, JJV), pp. 303–323.
ASPLOSASPLOS-2011-EsmaeilzadehCXBM #hardware #performance #roadmap
Looking back on the language and hardware revolutions: measured power, performance, and scaling (HE, TC, XY, SMB, KSM), pp. 319–332.
CGOCGO-2011-BorinWBW #commit #named
LAR-CC: Large atomic regions with conditional commits (EB, YW, MBJ, CW), pp. 54–63.
CGOCGO-2011-GreathouseLAB #analysis #data flow #distributed
Highly scalable distributed dataflow analysis (JLG, CL, TMA, VB), pp. 277–288.
DACDAC-2011-ChippaRRC #trade-off
Dynamic effort scaling: managing the quality-efficiency tradeoff (VKC, AR, KR, STC), pp. 603–608.
DACDAC-2011-HsiaoD #bound #parallel
A highly scalable parallel boundary element method for capacitance extraction (YCH, LD), pp. 552–557.
DACDAC-2011-MukherjeeFBL #automation #linear
Automatic stability checking for large linear analog integrated circuits (PM, GPF, RB, PL), pp. 304–309.
DACDAC-2011-Saha #architecture #composition #named #reuse
CIRUS: a scalable modular architecture for reusable drivers (BS), pp. 260–261.
DACDAC-2011-ShinKCP
Dynamic voltage scaling of OLED displays (DS, YK, NC, MP), pp. 53–58.
DATEDATE-2011-BarceloGBS #estimation #performance
An efficient and scalable STA tool with direct path estimation and exhaustive sensitization vector exploration for optimal delay computation (SB, XG, SAB, JS), pp. 1602–1607.
DATEDATE-2011-BehrendLHRKR #embedded #hybrid #verification
Scalable hybrid verification for embedded software (JB, DL, PH, JR, TK, WR), pp. 179–184.
DATEDATE-2011-GobbatoCG #megamodelling #parallel
A parallel Hamiltonian eigensolver for passivity characterization and enforcement of large interconnect macromodels (LG, AC, SGT), pp. 26–31.
DATEDATE-2011-KangD #classification #gpu #metaprogramming
Scalable packet classification via GPU metaprogramming (KK, YSD), pp. 871–874.
DATEDATE-2011-StranoGLFGB #architecture #self
Exploiting Network-on-Chip structural redundancy for a cooperative and scalable built-in self-test architecture (AS, CGR, DL, MF, MEG, DB), pp. 661–666.
DATEDATE-2011-WilleKD
Determining the minimal number of lines for large reversible circuits (RW, OK, RD), pp. 1204–1207.
DATEDATE-2011-ZhaoDX #3d #design #energy #fine-grained
An energy-efficient 3D CMP design with fine-grained voltage scaling (JZ, XD, YX), pp. 539–542.
HPCAHPCA-2011-FerdmanLBF #manycore
Cuckoo directory: A scalable directory for many-core systems (MF, PLK, KB, BF), pp. 169–180.
HPCAHPCA-2011-JacobsonBBAE #abstraction #architecture #modelling
Abstraction and microarchitecture scaling in early-stage power modeling (HMJ, AB, PB, EA, RJE), pp. 394–405.
HPDCHPDC-2011-ZhouKB #debugging #detection #locality #named #parallel #source code #using
Vrisha: using scaling properties of parallel programs for bug detection and localization (BZ, MK, SB), pp. 85–96.
PDPPDP-2011-AliKGP #approach #communication #fault tolerance #modelling #programming
A Redundant Communication Approach to Scalable Fault Tolerance in PGAS Programming Models (NA, SK, NG, BJP), pp. 24–31.
PDPPDP-2011-Kraxberger #network
Scalable Secure Routing for Heterogeneous Unstructured P2P Networks (SK), pp. 619–626.
PDPPDP-2011-LukawskiS #data type #distributed #maintenance
Balancing Workloads of Servers Maintaining Scalable Distributed Data Structures (GL, KS), pp. 80–84.
PDPPDP-2011-StotzkaHJSWHGKB
Perspective of the Large Scale Data Facility (LSDF) Supporting Nuclear Fusion Applications (RS, VH, TJ, MS, JvW, MH, AG, RK, SB), pp. 373–379.
PPoPPPPoPP-2011-FengGH #commit #named #parallel
SpiceC: scalable parallelism via implicit copying and explicit commit (MF, RG, YH), pp. 69–80.
PPoPPPPoPP-2011-FernandesC #memory management #multi #transaction
Lock-free and scalable multi-version software transactional memory (SMF, JPC), pp. 179–188.
PPoPPPPoPP-2011-MurarasuWBBP #algorithm #data type #grid
Compact data structure and scalable algorithms for the sparse grid technique (AFM, JW, GB, DB, DP), pp. 25–34.
PPoPPPPoPP-2011-WangLCWCZZ #named #parallel
COREMU: a scalable and portable parallel full-system emulator (ZW, RL, YC, XW, HC, WZ, BZ), pp. 213–222.
SOSPSOSP-2011-GlendenningBKA #consistency
Scalable consistency in Scatter (LG, IB, AK, TEA), pp. 15–28.
SOSPSOSP-2011-LloydFKA #consistency
Don’t settle for eventual: scalable causal consistency for wide-area storage with COPS (WL, MJF, MK, DGA), pp. 401–416.
CADECADE-2011-HoderV #reasoning
Sine Qua Non for Large Theory Reasoning (KH, AV), pp. 299–314.
CAVCAV-2011-FrehseGDCRLRGDM #hybrid #named #verification
SpaceEx: Scalable Verification of Hybrid Systems (GF, CLG, AD, SC, RR, OL, RR, AG, TD, OM), pp. 379–395.
ISSTAISSTA-2011-McGillDS #analysis #concept #modelling
Scalable analysis of conceptual data models (MJM, LKD, REKS), pp. 56–66.
HTHT-2010-CorletteS #network #online #predict #social
Link prediction applied to an open large-scale online social network (DC, FMSI), pp. 135–140.
SIGMODSIGMOD-2010-ArumugamDJPP
The DataPath system: a data-centric analytic processing engine for large data warehouses (SA, AD, CMJ, NP, LLP), pp. 519–530.
SIGMODSIGMOD-2010-BiemBFRRVKM #realtime
IBM infosphere streams for scalable, real-time, intelligent transportation services (AB, EB, HF, AR, AR, OV, HNK, CM), pp. 1093–1104.
SIGMODSIGMOD-2010-Brown #analysis #array #overview
Overview of sciDB: large scale array storage, processing and analysis (PGB), pp. 963–968.
SIGMODSIGMOD-2010-ChenWHY #graph #in the cloud
Large graph processing in the cloud (RC, XW, BH, MY), pp. 1123–1126.
SIGMODSIGMOD-2010-KhanYW #graph #mining #proximity #towards
Towards proximity pattern mining in large graphs (AK, XY, KLW), pp. 867–878.
SIGMODSIGMOD-2010-MalewiczABDHLC #graph #named
Pregel: a system for large-scale graph processing (GM, MHA, AJCB, JCD, IH, NL, GC), pp. 135–146.
SIGMODSIGMOD-2010-MoonCZ #architecture #evolution #optimisation #query #transaction
Scalable architecture and query optimization fortransaction-time DBs with evolving schemas (HJM, CC, CZ), pp. 207–218.
VLDBVLDB-2010-BaidRLDN #keyword #relational #towards
Toward Scalable Keyword Search over Relational Data (AB, IR, JL, AD, JFN), pp. 140–149.
VLDBVLDB-2010-BuHBE #clustering #named #performance
HaLoop: Efficient Iterative Data Processing on Large Clusters (YB, BH, MB, MDE), pp. 285–296.
VLDBVLDB-2010-ChengLYLLX #database #effectiveness
Explore or Exploit? Effective Strategies for Disambiguating Large Databases (RC, EL, XSY, MHL, XL, XX), pp. 815–825.
VLDBVLDB-2010-JohnsonPSAA #approach #named
Aether: A Scalable Approach to Logging (RJ, IP, RS, MA, AA), pp. 681–692.
VLDBVLDB-2010-KandhanTP #multi #named #pattern matching #performance
SigMatch: Fast and Scalable Multi-Pattern Matching (RK, NT, JMP), pp. 1173–1184.
VLDBVLDB-2010-MacropolS #clustering #graph
Scalable Discovery of Best Clusters on Large Graphs (KM, AKS), pp. 693–702.
VLDBVLDB-2010-MarnetteMP #dependence #functional
Scalable Data Exchange with Functional Dependencies (BM, GM, PP), pp. 105–116.
VLDBVLDB-2010-Matsudaira #3d #biology #dataset
High-End Biological Imaging Generates Very Large 3D+ and Dynamic Datasets (PM), p. 3.
VLDBVLDB-2010-ParameswaranGR #concept #dataset #towards #web
Towards The Web of Concepts: Extracting Concepts from Large Datasets (AGP, HGM, AR), pp. 566–577.
VLDBVLDB-2010-PestiLBIW #mobile #named #network #query
RoadTrack: Scaling Location Updates for Mobile Clients on Road Networks with Query Awareness (PP, LL, BB, AI, MW), pp. 1493–1504.
VLDBVLDB-2010-WickMM #database #graph #probability
Scalable Probabilistic Databases with Factor Graphs and MCMC (MLW, AM, GM), pp. 794–804.
VLDBVLDB-2010-YildirimCZ #graph #named #reachability
GRAIL: Scalable Reachability Index for Large Graphs (HY, VC, MJZ), pp. 276–284.
VLDBVLDB-2010-ZhangYJ #approximate #graph #named
SAPPER: Subgraph Indexing and Approximate Matching in Large Graphs (SZ, JY, WJ), pp. 1185–1194.
VLDBVLDB-2010-ZhaoH #graph #network #on the #optimisation #query
On Graph Query Optimization in Large Networks (PZ, JH), pp. 340–351.
ITiCSEITiCSE-2010-BasawapatnaKR #design #education #game studies #using
Using scalable game design to teach computer science from middle school to graduate school (ARB, KHK, AR), pp. 224–228.
CSMRCSMR-2010-MalikJAHFH #analysis #automation #comparison #enterprise #performance #testing
Automatic Comparison of Load Tests to Support the Performance Analysis of Large Enterprise Systems (HM, ZMJ, BA, AEH, PF, GH), pp. 222–231.
CSMRCSMR-2010-MyersSS #debugging
Utilizing Debug Information to Compact Loops in Large Program Traces (DM, MADS, MS), pp. 41–50.
ICPCICPC-2010-BarbourYZ #clone detection #detection
A Technique for Just-in-Time Clone Detection in Large Scale Systems (LB, HY, YZ), pp. 76–79.
ICSMEICSM-2010-CollardMR #adaptation #approach #lightweight
A lightweight transformational approach to support large scale adaptive changes (MLC, JIM, BPR), pp. 1–10.
ICSMEICSM-2010-HummelJHC #clone detection #detection #distributed #incremental
Index-based code clone detection: incremental, distributed, scalable (BH, EJ, LH, MC), pp. 1–9.
ICSMEICSM-2010-KeivanlooRSR #code search #framework #named #semantics #source code
SE-CodeSearch: A scalable Semantic Web-based source code search infrastructure (IK, LR, PS, JR), pp. 1–5.
WCREWCRE-2010-SurianLL #collaboration #developer #mining #network
Mining Collaboration Patterns from a Large Developer Network (DS, DL, EPL), pp. 269–273.
CIAACIAA-2010-AllauzenCM #automaton #kernel
Large-Scale Training of SVMs with Automata Kernels (CA, CC, MM), pp. 17–27.
CIAACIAA-2010-ReidenbachS #polynomial #regular expression
A Polynomial Time Match Test for Large Classes of Extended Regular Expressions (DR, MLS), pp. 241–250.
ICALPICALP-v1-2010-BansalKN #algorithm #scheduling
Better Scalable Algorithms for Broadcast Scheduling (NB, RK, VN), pp. 324–335.
SEFMSEFM-2010-MassinkLBH #algebra #analysis #approach #process
A Scalable Fluid Flow Process Algebraic Approach to Emergency Egress Analysis (MM, DL, AB, MDH), pp. 169–180.
SEFMSEFM-2010-Powell #analysis #behaviour #modelling
Behavior Engineering — A Scalable Modeling and Analysis Method (DP), pp. 31–40.
HaskellHaskell-2010-OSullivanT #haskell
Scalable i/o event handling for GHC (BO, JT), pp. 103–108.
CoGVS-Games-2010-PanzoliPDSPPSF #experience #interactive
Levels of Interaction: A User-Guided Experience in Large-Scale Virtual Environments (DP, CEP, ID, SS, PP, AP, VS, SdF), pp. 87–90.
CHICHI-2010-AndrewsEN
Space to think: large high-resolution displays for sensemaking (CA, AE, CN), pp. 55–64.
CHICHI-2010-BaileyH #case study #idea #pipes and filters #what
What’s your idea?: a case study of a grassroots innovation pipeline within a large software company (BPB, EH), pp. 2065–2074.
CHICHI-2010-BiBB #visual notation
Effects of interior bezels of tiled-monitor large displays on visual search, tunnel steering, and target selection (XB, SHB, RB), pp. 65–74.
CHICHI-2010-FaridaniBRG #online
Opinion space: a scalable tool for browsing online comments (SF, EB, KR, KYG), pp. 1175–1184.
CHICHI-2010-FuGN #3d #multi #simulation
Multi-touch techniques for exploring large-scale 3D astrophysical simulations (CWF, WBG, JAN), pp. 2213–2222.
CHICHI-2010-NgaiCNCCLT #framework #smarttech
i*CATch: a scalable plug-n-play wearable computing framework for novices and children (GN, SCFC, VTYN, JCYC, SSSC, WWYL, JTPT), pp. 443–452.
CHICHI-2010-RoddenHF #experience #metric #user interface #web
Measuring the user experience on a large scale: user-centered metrics for web applications (KR, HH, XF), pp. 2395–2398.
CHICHI-2010-SongKLS #comparative #evaluation #visualisation
A comparative evaluation on tree visualization methods for hierarchical structures with large fan-outs (HS, BHK, BL, JS), pp. 223–232.
SOFTVISSOFTVIS-2010-AnslowMNTB #evaluation #using #visualisation
User evaluation of polymetric views using a large visualization wall (CA, SM, JN, EDT, RB), pp. 25–34.
SOFTVISSOFTVIS-2010-PauwH #named #visual notation
Zinsight: a visual and analytic environment for exploring large event traces (WDP, SH), pp. 143–152.
ICEISICEIS-AIDSS-2010-VialeBGP #approach #modelling #process #sequence #using
Modeling Large Scale Manufacturing Process from Timed Data — Using the TOM4L Approach and Sequence Alignment Information for Modeling STMicroelectronics’ Production Processes (