Collaborated with:
Brent E. Harrison Pu Yang C.L.I.Jr. Brent Edward Harrison Andrew S. Cantino M.O.Riedl Charles L. Isbell Jr. Karthik Sankaran Narayan T.Barik X.Jiang Zach Cleghern Soumendra Lahiri Osman Y. Özaltin Rogelio Enrique Cardona-Rivera Justus Robertson Stephen G. Ware Robert Michael Young
Talks about:
game (8) player (5) predict (3) success (2) scrabbl (2) retent (2) driven (2) analyt (2) model (2) dynam (2)
Person: David L. Roberts
DBLP: Roberts:David_L=
Contributed to:
Wrote 12 papers:
- AIIDE-2007-RobertsCI #case study #design #interactive
- Player Autonomy versus Designer Intent: A Case Study of Interactive Tour Guides (DLR, ASC, CLIJ), pp. 95–97.
- DiGRA-2009-RobertsRI #game studies
- Beyond Adversarial: The Case for Game AI as Storytelling (DLR, MOR, CLIJ).
- AIIDE-2011-NarayanIR #authoring #generative #named #natural language
- DEXTOR: Reduced Effort Authoring for Template-Based Natural Language Generation (KSN, CLIJ, DLR).
- FDG-2011-HarrisonR #behaviour #predict #using
- Using sequential observations to model and predict player behavior (BEH, DLR), pp. 91–98.
- AIIDE-2012-BarikHRJ #detection #game studies #social
- Spatial Game Signatures for Bot Detection in Social Games (TB, BEH, DLR, XJ).
- AIIDE-2012-HarrisonR #game studies
- When Players Quit (Playing Scrabble) (BEH, DLR).
- CIG-2013-HarrisonR #adaptation #game studies
- Analytics-driven dynamic game adaption for player retention in Scrabble (BEH, DLR), pp. 1–8.
- CIG-2013-YangR #game studies #information management
- Knowledge discovery for characterizing team success or failure in (A)RTS games (PY, DLR), pp. 1–8.
- AIIDE-2014-Cardona-RiveraRWHRY
- Foreseeing Meaningful Choices (RECR, JR, SGW, BEH, DLR, RMY).
- AIIDE-2014-HarrisonR #2d #adaptation #game studies
- Analytics-Driven Dynamic Game Adaption for Player Retention in a 2-Dimensional Adventure Game (BEH, DLR).
- FDG-2014-YangHR #game studies #identification #predict
- Identifying patterns in combat that are predictive of success in MOBA games (PY, BEH, DLR).
- FDG-2017-CleghernLOR #modelling #predict #using
- Predicting future states in DotA 2 using value-split models of time series attribute data (ZC, SL, OYÖ, DLR), p. 10.