BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Finland
1 × Germany
1 × Israel
1 × Spain
2 × China
3 × Canada
5 × USA
Collaborated with:
I.W.Tsang K.Zhang A.Kocsor Z.Zhang D.Yeung R.Zhang W.Bi W.Zhong P.Cheung M.H.C.Law M.Li B.Lu Y.Li Z.Zhou B.Parvin K.T.Lai H.Zhu L.Qu J.Dai S.Yan X.Tang S.Li J.Peng J.Zhang
Talks about:
learn (6) kernel (5) regress (3) vector (3) model (3) larg (3) use (3) transform (2) algorithm (2) supervis (2)

Person: James T. Kwok

DBLP DBLP: Kwok:James_T=

Contributed to:

ICML c2 20142014
ICML 20112011
ICML 20102010
ICML 20092009
ICML 20082008
ICML 20072007
ICML 20062006
ICPR v3 20062006
KDD 20062006
ICML 20052005
ICML 20042004
ICML 20032003
ICPR v2 20022002
ICPR v2 20002000

Wrote 21 papers:

ICML-c2-2014-ZhangK #distributed #optimisation
Asynchronous Distributed ADMM for Consensus Optimization (RZ, JTK), pp. 1701–1709.
ICML-2011-BiK #classification #multi
MultiLabel Classification on Tree- and DAG-Structured Hierarchies (WB, JTK), pp. 17–24.
ICML-2011-ZhongK #automation #modelling #performance
Efficient Sparse Modeling with Automatic Feature Grouping (WZ, JTK), pp. 9–16.
ICML-2010-LiKL #approximate #scalability
Making Large-Scale Nyström Approximation Possible (ML, JTK, BLL), pp. 631–638.
ICML-2009-LiKZ #learning #using
Semi-supervised learning using label mean (YFL, JTK, ZHZ), pp. 633–640.
ICML-2009-ZhangKP #learning #prototype #scalability
Prototype vector machine for large scale semi-supervised learning (KZ, JTK, BP), pp. 1233–1240.
ICML-2008-ZhangTK #analysis #approximate #fault #rank
Improved Nyström low-rank approximation and error analysis (KZ, IWT, JTK), pp. 1232–1239.
ICML-2007-TsangKK
Simpler core vector machines with enclosing balls (IWT, AK, JTK), pp. 911–918.
ICML-2007-ZhangTK #clustering
Maximum margin clustering made practical (KZ, IWT, JTK), pp. 1119–1126.
ICML-2006-CheungK #framework #learning #multi
A regularization framework for multiple-instance learning (PMC, JTK), pp. 193–200.
ICML-2006-DaiYTK #adaptation #classification #nondeterminism
Locally adaptive classification piloted by uncertainty (JD, SY, XT, JTK), pp. 225–232.
ICML-2006-ZhangK #kernel #matrix #performance
Block-quantized kernel matrix for fast spectral embedding (KZ, JTK), pp. 1097–1104.
ICPR-v3-2006-LiPKZ #multimodal #using
Multimodal Registration using the Discrete Wavelet Frame Transform (SL, JP, JTK, JZ), pp. 877–880.
KDD-2006-TsangKK #feature model #kernel #performance #set
Efficient kernel feature extraction for massive data sets (IWT, AK, JTK), pp. 724–729.
ICML-2005-TsangKL #problem #scalability
Core Vector Regression for very large regression problems (IWT, JTK, KTL), pp. 912–919.
ICML-2004-ZhangKY #algorithm
Surrogate maximization/minimization algorithms for AdaBoost and the logistic regression model (ZZ, JTK, DYY).
ICML-2004-ZhangYK #algorithm #kernel #learning #matrix #using
Bayesian inference for transductive learning of kernel matrix using the Tanner-Wong data augmentation algorithm (ZZ, DYY, JTK).
ICML-2003-KwokT #kernel #learning
Learning with Idealized Kernels (JTK, IWT), pp. 400–407.
ICML-2003-KwokT03a #kernel #problem
The Pre-Image Problem in Kernel Methods (JTK, IWT), pp. 408–415.
ICPR-v2-2002-ZhuKQ
Improving De-Noising by Coefficient De-Noising and Dyadic Wavelet Transform (HZ, JTK, LQ), p. 273–?.
ICPR-v2-2000-LawK #clustering #learning #modelling #sequence
Rival Penalized Competitive Learning for Model-Based Sequence Clustering (MHCL, JTK), pp. 2195–2198.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.