Proceedings of the 31st International Conference on Machine Learning, Cycle 2
ICML c2, 2014.
@proceedings{ICML-c2-2014, address = "Beijing, China", ee = "http://jmlr.org/proceedings/papers/v32/", publisher = "{JMLR.org}", series = "{JMLR Proceedings}", title = "{Proceedings of the 31st International Conference on Machine Learning, Cycle 2}", volume = 32, year = 2014, }
Contents (225 items)
- ICML-c2-2014-SunM #geometry #learning #statistics
- An Information Geometry of Statistical Manifold Learning (KS, SMM), pp. 1–9.
- ICML-c2-2014-ZoghiWMR #bound #problem
- Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem (MZ, SW, RM, MdR), pp. 10–18.
- ICML-c2-2014-HamidXGD #random
- Compact Random Feature Maps (RH, YX, AG, DD), pp. 19–27.
- ICML-c2-2014-Kontorovich #algorithm #bound #metric
- Concentration in unbounded metric spaces and algorithmic stability (AK), pp. 28–36.
- ICML-c2-2014-HsuS
- Heavy-tailed regression with a generalized median-of-means (DH, SS), pp. 37–45.
- ICML-c2-2014-ValkoMKK #graph
- Spectral Bandits for Smooth Graph Functions (MV, RM, BK, TK), pp. 46–54.
- ICML-c2-2014-ZhaoMXZZ #analysis #component #robust
- Robust Principal Component Analysis with Complex Noise (QZ, DM, ZX, WZ, LZ), pp. 55–63.
- ICML-c2-2014-HuangCG #estimation #scalability
- Scalable Semidefinite Relaxation for Maximum A Posterior Estimation (QXH, YC, LJG), pp. 64–72.
- ICML-c2-2014-MuHWG #bound
- Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery (CM, BH, JW, DG), pp. 73–81.
- ICML-c2-2014-DasL #automation #interactive
- Automated inference of point of view from user interactions in collective intelligence venues (SD, AL), pp. 82–90.
- ICML-c2-2014-WangLLFDY #matrix
- Rank-One Matrix Pursuit for Matrix Completion (ZW, MJL, ZL, WF, HD, JY), pp. 91–99.
- ICML-c2-2014-ChenGH
- Near-Optimal Joint Object Matching via Convex Relaxation (YC, LJG, QXH), pp. 100–108.
- ICML-c2-2014-MalioutovS
- Convex Total Least Squares (DM, NS), pp. 109–117.
- ICML-c2-2014-JawanpuriaVN #feature model #kernel #learning #multi #on the
- On p-norm Path Following in Multiple Kernel Learning for Non-linear Feature Selection (PJ, MV, JSN), pp. 118–126.
- ICML-c2-2014-YuanLZ #optimisation
- Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization (XY, PL, TZ), pp. 127–135.
- ICML-c2-2014-HonorioJ #consistency #framework
- A Unified Framework for Consistency of Regularized Loss Minimizers (JH, TSJ), pp. 136–144.
- ICML-c2-2014-LinYHY #distance #learning
- Geodesic Distance Function Learning via Heat Flow on Vector Fields (BL, JY, XH, JY), pp. 145–153.
- ICML-c2-2014-SinglaBBKK #education
- Near-Optimally Teaching the Crowd to Classify (AS, IB, GB, AK, AK), pp. 154–162.
- ICML-c2-2014-KricheneDB #convergence #learning #on the
- On the convergence of no-regret learning in selfish routing (WK, BD, AMB), pp. 163–171.
- ICML-c2-2014-MaryPN #algorithm #evaluation
- Improving offline evaluation of contextual bandit algorithms via bootstrapping techniques (JM, PP, ON), pp. 172–180.
- ICML-c2-2014-TamarMX #approximate #robust #scalability #using
- Scaling Up Robust MDPs using Function Approximation (AT, SM, HX), pp. 181–189.
- ICML-c2-2014-PingLI
- Marginal Structured SVM with Hidden Variables (WP, QL, ATI), pp. 190–198.
- ICML-c2-2014-MizrahiDF #learning #linear #markov #parallel #random
- Linear and Parallel Learning of Markov Random Fields (YDM, MD, NdF), pp. 199–207.
- ICML-c2-2014-GalG #parallel #process #using
- Pitfalls in the use of Parallel Inference for the Dirichlet Process (YG, ZG), pp. 208–216.
- ICML-c2-2014-ZhouCL #crowdsourcing #identification #multi
- Optimal PAC Multiple Arm Identification with Applications to Crowdsourcing (YZ, XC, JL), pp. 217–225.
- ICML-c2-2014-BengioLAY #generative #network #probability
- Deep Generative Stochastic Networks Trainable by Backprop (YB, EL, GA, JY), pp. 226–234.
- ICML-c2-2014-WangLYFWY #algorithm #modelling #parallel #scalability
- A Highly Scalable Parallel Algorithm for Isotropic Total Variation Models (JW, QL, SY, WF, PW, JY), pp. 235–243.
- ICML-c2-2014-ChenX #modelling #statistics
- Statistical-Computational Phase Transitions in Planted Models: The High-Dimensional Setting (YC, JX), pp. 244–252.
- ICML-c2-2014-ContalPV #optimisation #process
- Gaussian Process Optimization with Mutual Information (EC, VP, NV), pp. 253–261.
- ICML-c2-2014-ZhouLPM
- Aggregating Ordinal Labels from Crowds by Minimax Conditional Entropy (DZ, QL, JCP, CM), pp. 262–270.
- ICML-c2-2014-NiepertD #modelling
- Exchangeable Variable Models (MN, PMD), pp. 271–279.
- ICML-c2-2014-Ben-DavidH #clustering
- Clustering in the Presence of Background Noise (SBD, NH), pp. 280–288.
- ICML-c2-2014-LiuZWY
- Safe Screening with Variational Inequalities and Its Application to Lasso (JL, ZZ, JW, JY), pp. 289–297.
- ICML-c2-2014-WuCLY #behaviour #consistency #learning #network #predict #social
- Learning the Consistent Behavior of Common Users for Target Node Prediction across Social Networks (SHW, HHC, KHL, PSY), pp. 298–306.
- ICML-c2-2014-EstrachSL
- Signal recovery from Pooling Representations (JBE, AS, YL), pp. 307–315.
- ICML-c2-2014-BrunskillL #learning
- PAC-inspired Option Discovery in Lifelong Reinforcement Learning (EB, LL), pp. 316–324.
- ICML-c2-2014-LinDH0 #classification #encoding #multi
- Multi-label Classification via Feature-aware Implicit Label Space Encoding (ZL, GD, MH, JW), pp. 325–333.
- ICML-c2-2014-BratieresQNG #graph #grid #predict #process #scalability
- Scalable Gaussian Process Structured Prediction for Grid Factor Graph Applications (SB, NQ, SN, ZG), pp. 334–342.
- ICML-c2-2014-ClemenconR #ranking
- Anomaly Ranking as Supervised Bipartite Ranking (SC, SR), pp. 343–351.
- ICML-c2-2014-CarlssonMRS #clustering #network #symmetry
- Hierarchical Quasi-Clustering Methods for Asymmetric Networks (GEC, FM, AR, SS), pp. 352–360.
- ICML-c2-2014-NakanoIKYU #process
- Rectangular Tiling Process (MN, KI, AK, TY, NU), pp. 361–369.
- ICML-c2-2014-WangSSMK #learning #metric
- Two-Stage Metric Learning (JW, KS, FS, SMM, AK), pp. 370–378.
- ICML-c2-2014-Hernandez-LobatoHG #matrix #modelling #probability #scalability
- Stochastic Inference for Scalable Probabilistic Modeling of Binary Matrices (JMHL, NH, ZG), pp. 379–387.
- ICML-c2-2014-YangLR #linear
- Elementary Estimators for High-Dimensional Linear Regression (EY, ACL, PDR), pp. 388–396.
- ICML-c2-2014-YangLR14a #matrix
- Elementary Estimators for Sparse Covariance Matrices and other Structured Moments (EY, ACL, PDR), pp. 397–405.
- ICML-c2-2014-FangCL #graph #learning
- Graph-based Semi-supervised Learning: Realizing Pointwise Smoothness Probabilistically (YF, KCCC, HWL), pp. 406–414.
- ICML-c2-2014-LiZ0 #learning #multi
- Bayesian Max-margin Multi-Task Learning with Data Augmentation (CL, JZ, JC), pp. 415–423.
- ICML-c2-2014-QinLJ #learning #optimisation
- Sparse Reinforcement Learning via Convex Optimization (ZQ, WL, FJ), pp. 424–432.
- ICML-c2-2014-RodriguesPR #classification #learning #multi #process
- Gaussian Process Classification and Active Learning with Multiple Annotators (FR, FCP, BR), pp. 433–441.
- ICML-c2-2014-SuGR #network #predict
- Structured Prediction of Network Response (HS, AG, JR), pp. 442–450.
- ICML-c2-2014-TaylorGP #analysis #approximate #linear #programming
- An Analysis of State-Relevance Weights and Sampling Distributions on L1-Regularized Approximate Linear Programming Approximation Accuracy (GT, CG, DP), pp. 451–459.
- ICML-c2-2014-YangPK #equivalence #optimisation
- Optimization Equivalence of Divergences Improves Neighbor Embedding (ZY, JP, SK), pp. 460–468.
- ICML-c2-2014-LiuWRBS #algorithm #coordination #parallel #probability
- An Asynchronous Parallel Stochastic Coordinate Descent Algorithm (JL, SW, CR, VB, SS), pp. 469–477.
- ICML-c2-2014-KpotufeSJS #consistency
- Consistency of Causal Inference under the Additive Noise Model (SK, ES, DJ, BS), pp. 478–486.
- ICML-c2-2014-SchwingHPU #algorithm #convergence #parallel #using
- Globally Convergent Parallel MAP LP Relaxation Solver using the Frank-Wolfe Algorithm (AGS, TH, MP, RU), pp. 487–495.
- ICML-c2-2014-MalekAB #linear #markov #problem #programming #scalability
- Linear Programming for Large-Scale Markov Decision Problems (AM, YAY, PLB), pp. 496–504.
- ICML-c2-2014-NieHH #linear
- Linear Time Solver for Primal SVM (FN, YH, HH), pp. 505–513.
- ICML-c2-2014-JunB #memory management #monte carlo #performance
- Memory (and Time) Efficient Sequential Monte Carlo (SHJ, ABC), pp. 514–522.
- ICML-c2-2014-WangWY #reduction #scalability
- Scaling SVM and Least Absolute Deviations via Exact Data Reduction (JW, PW, JY), pp. 523–531.
- ICML-c2-2014-LiG #classification #learning #representation #semantics
- Latent Semantic Representation Learning for Scene Classification (XL, YG), pp. 532–540.
- ICML-c2-2014-AgarwalKKSV #multi #predict #scalability
- Least Squares Revisited: Scalable Approaches for Multi-class Prediction (AA, SMK, NK, LS, GV), pp. 541–549.
- ICML-c2-2014-AwasthiBV #algorithm #clustering #interactive
- Local algorithms for interactive clustering (PA, MFB, KV), pp. 550–558.
- ICML-c2-2014-NgoT #modelling #relational
- Model-Based Relational RL When Object Existence is Partially Observable (NAV, MT), pp. 559–567.
- ICML-c2-2014-SuttonMPH #equivalence #monte carlo
- A new Q(λ) with interim forward view and Monte Carlo equivalence (RSS, ARM, DP, HvH), pp. 568–576.
- ICML-c2-2014-TorkamaniL #on the #robust
- On Robustness and Regularization of Structural Support Vector Machines (MT, DL), pp. 577–585.
- ICML-c2-2014-BeijbomSKV #multi
- Guess-Averse Loss Functions For Cost-Sensitive Multiclass Boosting (OB, MJS, DJK, NV), pp. 586–594.
- ICML-c2-2014-KirosSZ #modelling #multimodal
- Multimodal Neural Language Models (RK, RS, RSZ), pp. 595–603.
- ICML-c2-2014-Sohl-DicksteinPG #optimisation #performance #probability #scalability
- Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods (JSD, BP, SG), pp. 604–612.
- ICML-c2-2014-YiCS #linear
- Alternating Minimization for Mixed Linear Regression (XY, CC, SS), pp. 613–621.
- ICML-c2-2014-KusnerTWA #probability
- Stochastic Neighbor Compression (MJK, ST, KQW, KA), pp. 622–630.
- ICML-c2-2014-WenYG #learning #nondeterminism #robust
- Robust Learning under Uncertain Test Distributions: Relating Covariate Shift to Model Misspecification (JW, CNY, RG), pp. 631–639.
- ICML-c2-2014-SongADX #estimation #modelling #multi #parametricity
- Nonparametric Estimation of Multi-View Latent Variable Models (LS, AA, BD, BX), pp. 640–648.
- ICML-c2-2014-MaddisonT #generative #modelling #source code
- Structured Generative Models of Natural Source Code (CJM, DT), pp. 649–657.
- ICML-c2-2014-Yi0WJJ #algorithm #clustering
- A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data (JY, LZ, JW, RJ, AKJ), pp. 658–666.
- ICML-c2-2014-ToulisAR #analysis #linear #modelling #probability #statistics
- Statistical analysis of stochastic gradient methods for generalized linear models (PT, EA, JR), pp. 667–675.
- ICML-c2-2014-0001MS #random
- Coding for Random Projections (PL, MM, AS), pp. 676–684.
- ICML-c2-2014-CuturiD #performance
- Fast Computation of Wasserstein Barycenters (MC, AD), pp. 685–693.
- ICML-c2-2014-JohanssonJDB #geometry #graph #kernel #using
- Global graph kernels using geometric embeddings (FJ, VJ, DPD, CB), pp. 694–702.
- ICML-c2-2014-Chen0 #big data #learning #modelling #topic #using
- Topic Modeling using Topics from Many Domains, Lifelong Learning and Big Data (ZC, BL), pp. 703–711.
- ICML-c2-2014-VinnikovS #component #independence
- K-means recovers ICA filters when independent components are sparse (AV, SSS), pp. 712–720.
- ICML-c2-2014-SunIM #classification #learning #linear
- Learning Mixtures of Linear Classifiers (YS, SI, AM), pp. 721–729.
- ICML-c2-2014-WangST #statistics
- The Falling Factorial Basis and Its Statistical Applications (YXW, AJS, RJT), pp. 730–738.
- ICML-c2-2014-HoangLJK #learning #process
- Nonmyopic ϵ-Bayes-Optimal Active Learning of Gaussian Processes (TNH, BKHL, PJ, MSK), pp. 739–747.
- ICML-c2-2014-ArgyriouD #theorem
- A Unifying View of Representer Theorems (AA, FD), pp. 748–756.
- ICML-c2-2014-GentileLZ #clustering #online
- Online Clustering of Bandits (CG, SL, GZ), pp. 757–765.
- ICML-c2-2014-HoulsbyHG #learning #matrix #robust
- Cold-start Active Learning with Robust Ordinal Matrix Factorization (NH, JMHL, ZG), pp. 766–774.
- ICML-c2-2014-NguyenMVEB #analysis #correlation #multi
- Multivariate Maximal Correlation Analysis (HVN, EM, JV, PE, KB), pp. 775–783.
- ICML-c2-2014-FujiwaraI #performance
- Efficient Label Propagation (YF, GI), pp. 784–792.
- ICML-c2-2014-DaneshmandGSS #algorithm #complexity #network
- Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm (HD, MGR, LS, BS), pp. 793–801.
- ICML-c2-2014-YanLXH #predict
- Coupled Group Lasso for Web-Scale CTR Prediction in Display Advertising (LY, WJL, GRX, DH), pp. 802–810.
- ICML-c2-2014-NovikovROV
- Putting MRFs on a Tensor Train (AN, AR, AO, DV), pp. 811–819.
- ICML-c2-2014-0005YJ #algorithm #performance #robust
- Efficient Algorithms for Robust One-bit Compressive Sensing (LZ, JY, RJ), pp. 820–828.
- ICML-c2-2014-LevineK #learning #network #optimisation #policy
- Learning Complex Neural Network Policies with Trajectory Optimization (SL, VK), pp. 829–837.
- ICML-c2-2014-ZhangDW #approximate #nearest neighbour
- Composite Quantization for Approximate Nearest Neighbor Search (TZ, CD, JW), pp. 838–846.
- ICML-c2-2014-TeradaL
- Local Ordinal Embedding (YT, UvL), pp. 847–855.
- ICML-c2-2014-AilonKJ
- Reducing Dueling Bandits to Cardinal Bandits (NA, ZSK, TJ), pp. 856–864.
- ICML-c2-2014-XuTXR #reduction
- Large-margin Weakly Supervised Dimensionality Reduction (CX, DT, CX, YR), pp. 865–873.
- ICML-c2-2014-ChakrabartiFCM #multi #network #scalability
- Joint Inference of Multiple Label Types in Large Networks (DC, SF, JC, SAM), pp. 874–882.
- ICML-c2-2014-KarninH #linear
- Hard-Margin Active Linear Regression (ZSK, EH), pp. 883–891.
- ICML-c2-2014-KontorovichW #multi #nearest neighbour
- Maximum Margin Multiclass Nearest Neighbors (AK, RW), pp. 892–900.
- ICML-c2-2014-LinAKLC #combinator #feedback #game studies #linear #monitoring
- Combinatorial Partial Monitoring Game with Linear Feedback and Its Applications (TL, BDA, RDK, JL, WC), pp. 901–909.
- ICML-c2-2014-ReyRF
- Sparse meta-Gaussian information bottleneck (MR, VR, TJF), pp. 910–918.
- ICML-c2-2014-KrishnamurthyKPW #estimation #parametricity
- Nonparametric Estimation of Renyi Divergence and Friends (AK, KK, BP, LAW), pp. 919–927.
- ICML-c2-2014-WangL #estimation #metric #robust
- Robust Inverse Covariance Estimation under Noisy Measurements (JKW, SdL), pp. 928–936.
- ICML-c2-2014-GardnerKZWC #constraints #difference #optimisation
- Bayesian Optimization with Inequality Constraints (JRG, MJK, ZEX, KQW, JC), pp. 937–945.
- ICML-c2-2014-YuKGC
- Circulant Binary Embedding (FXY, SK, YG, SFC), pp. 946–954.
- ICML-c2-2014-LiuZBP #dependence #modelling #multi #testing #visual notation
- Multiple Testing under Dependence via Semiparametric Graphical Models (JL, CZ, ESB, DP), pp. 955–963.
- ICML-c2-2014-TuZWQ #analysis #scalability
- Making Fisher Discriminant Analysis Scalable (BT, ZZ, SW, HQ), pp. 964–972.
- ICML-c2-2014-KimO #process #scalability
- Hierarchical Dirichlet Scaling Process (DK, AHO), pp. 973–981.
- ICML-c2-2014-SatoN #analysis #approximate #equation #probability #process #using
- Approximation Analysis of Stochastic Gradient Langevin Dynamics by using Fokker-Planck Equation and Ito Process (IS, HN), pp. 982–990.
- ICML-c2-2014-PentinaL #bound #learning
- A PAC-Bayesian bound for Lifelong Learning (AP, CHL), pp. 991–999.
- ICML-c2-2014-ShamirS0 #approximate #distributed #optimisation #using
- Communication-Efficient Distributed Optimization using an Approximate Newton-type Method (OS, NS, TZ), pp. 1000–1008.
- ICML-c2-2014-HarelMEC #concept #detection
- Concept Drift Detection Through Resampling (MH, SM, REY, KC), pp. 1009–1017.
- ICML-c2-2014-GleichM #algorithm #approximate #case study
- Anti-differentiating approximation algorithms: A case study with min-cuts, spectral, and flow (DG, MWM), pp. 1018–1025.
- ICML-c2-2014-BenavoliCMZR #process
- A Bayesian Wilcoxon signed-rank test based on the Dirichlet process (AB, GC, FM, MZ, FR), pp. 1026–1034.
- ICML-c2-2014-RavanbakhshSFG #graph #problem
- Min-Max Problems on Factor Graphs (S(R, CS, BJF, RG), pp. 1035–1043.
- ICML-c2-2014-AhnSW #distributed #probability
- Distributed Stochastic Gradient MCMC (SA, BS, MW), pp. 1044–1052.
- ICML-c2-2014-Cherian #nearest neighbour #using
- Nearest Neighbors Using Compact Sparse Codes (AC), pp. 1053–1061.
- ICML-c2-2014-NieYH #analysis #component #robust
- Optimal Mean Robust Principal Component Analysis (FN, JY, HH), pp. 1062–1070.
- ICML-c2-2014-Busa-FeketeHS #elicitation #modelling #rank #statistics #using
- Preference-Based Rank Elicitation using Statistical Models: The Case of Mallows (RBF, EH, BS), pp. 1071–1079.
- ICML-c2-2014-AhmedTBZDKB #detection #random
- Hierarchical Conditional Random Fields for Outlier Detection: An Application to Detecting Epileptogenic Cortical Malformations (BA, TT, KB, YZ, OD, RK, CEB), pp. 1080–1088.
- ICML-c2-2014-ScholzLIW #object-oriented
- A Physics-Based Model Prior for Object-Oriented MDPs (JS, ML, CLIJ, DW), pp. 1089–1097.
- ICML-c2-2014-SuzumuraOST #algorithm #robust
- Outlier Path: A Homotopy Algorithm for Robust SVM (SS, KO, MS, IT), pp. 1098–1106.
- ICML-c2-2014-WangY #crowdsourcing
- Ensemble-Based Tracking: Aggregating Crowdsourced Structured Time Series Data (NW, DYY), pp. 1107–1115.
- ICML-c2-2014-SatoKN #analysis #normalisation
- Latent Confusion Analysis by Normalized Gamma Construction (IS, HK, HN), pp. 1116–1124.
- ICML-c2-2014-DefazioDC #big data #incremental #named #performance #problem
- Finito: A faster, permutable incremental gradient method for big data problems (AD, JD, TSC), pp. 1125–1133.
- ICML-c2-2014-CortesKM #predict
- Ensemble Methods for Structured Prediction (CC, VK, MM), pp. 1134–1142.
- ICML-c2-2014-RomanoBNV #clustering #standard
- Standardized Mutual Information for Clustering Comparisons: One Step Further in Adjustment for Chance (SR, JB, XVN, KV), pp. 1143–1151.
- ICML-c2-2014-PachecoZBS
- Preserving Modes and Messages via Diverse Particle Selection (JP, SZ, MJB, EBS), pp. 1152–1160.
- ICML-c2-2014-WangRRCC #design #metric
- Nonlinear Information-Theoretic Compressive Measurement Design (LW, AR, MRDR, ARC, LC), pp. 1161–1169.
- ICML-c2-2014-GaboardiAHRW #query
- Dual Query: Practical Private Query Release for High Dimensional Data (MG, EJGA, JH, AR, ZSW), pp. 1170–1178.
- ICML-c2-2014-CortesMS
- Deep Boosting (CC, MM, US), pp. 1179–1187.
- ICML-c2-2014-LeM #distributed #documentation
- Distributed Representations of Sentences and Documents (QVL, TM), pp. 1188–1196.
- ICML-c2-2014-McGibbonRSKP #comprehension #markov #modelling
- Understanding Protein Dynamics with L1-Regularized Reversible Hidden Markov Models (RM, BR, MS, GK, VSP), pp. 1197–1205.
- ICML-c2-2014-Bou-AmmarERT #learning #multi #online #policy
- Online Multi-Task Learning for Policy Gradient Methods (HBA, EE, PR, MET), pp. 1206–1214.
- ICML-c2-2014-WestonWY
- Affinity Weighted Embedding (JW, RJW, HY), pp. 1215–1223.
- ICML-c2-2014-AffandiFAT #kernel #learning #parametricity #process
- Learning the Parameters of Determinantal Point Process Kernels (RHA, EBF, RPA, BT), pp. 1224–1232.
- ICML-c2-2014-EbanMG #classification
- Discrete Chebyshev Classifiers (EE, EM, AG), pp. 1233–1241.
- ICML-c2-2014-GregorDMBW #network
- Deep AutoRegressive Networks (KG, ID, AM, CB, DW), pp. 1242–1250.
- ICML-c2-2014-SunZZ #analysis #convergence
- A Convergence Rate Analysis for LogitBoost, MART and Their Variant (PS, TZ, JZ), pp. 1251–1259.
- ICML-c2-2014-HeinemannG #modelling #visual notation
- Inferning with High Girth Graphical Models (UH, AG), pp. 1260–1268.
- ICML-c2-2014-MengEH #learning #modelling #visual notation
- Learning Latent Variable Gaussian Graphical Models (ZM, BE, AOHI), pp. 1269–1277.
- ICML-c2-2014-RezendeMW #approximate #generative #modelling #probability
- Stochastic Backpropagation and Approximate Inference in Deep Generative Models (DJR, SM, DW), pp. 1278–1286.
- ICML-c2-2014-SeldinS #algorithm #probability
- One Practical Algorithm for Both Stochastic and Adversarial Bandits (YS, AS), pp. 1287–1295.
- ICML-c2-2014-GiesenLW #kernel #performance #robust
- Robust and Efficient Kernel Hyperparameter Paths with Guarantees (JG, SL, PW), pp. 1296–1304.
- ICML-c2-2014-WangHS #learning
- Active Transfer Learning under Model Shift (XW, TKH, JS), pp. 1305–1313.
- ICML-c2-2014-Scherrer #approximate #comparison #policy
- Approximate Policy Iteration Schemes: A Comparison (BS), pp. 1314–1322.
- ICML-c2-2014-LinK #constraints #learning #performance #representation
- Stable and Efficient Representation Learning with Nonnegativity Constraints (THL, HTK), pp. 1323–1331.
- ICML-c2-2014-GrandeWH #learning #performance #process
- Sample Efficient Reinforcement Learning with Gaussian Processes (RCG, TJW, JPH), pp. 1332–1340.
- ICML-c2-2014-AnarakiH #memory management #performance #random
- Memory and Computation Efficient PCA via Very Sparse Random Projections (FPA, SMH), pp. 1341–1349.
- ICML-c2-2014-MannMM
- Time-Regularized Interrupting Options (TRIO) (TAM, DJM, SM), pp. 1350–1358.
- ICML-c2-2014-Lopez-PazSSGS #analysis #component #random
- Randomized Nonlinear Component Analysis (DLP, SS, AJS, ZG, BS), pp. 1359–1367.
- ICML-c2-2014-LiZ #higher-order #learning #problem
- High Order Regularization for Semi-Supervised Learning of Structured Output Problems (YL, RSZ), pp. 1368–1376.
- ICML-c2-2014-NiuDPS #approximate #learning #multi
- Transductive Learning with Multi-class Volume Approximation (GN, BD, MCdP, MS), pp. 1377–1385.
- ICML-c2-2014-BalleHP #comparison #empirical #learning #probability
- Methods of Moments for Learning Stochastic Languages: Unified Presentation and Empirical Comparison (BB, WLH, JP), pp. 1386–1394.
- ICML-c2-2014-Chapados #effectiveness #modelling
- Effective Bayesian Modeling of Groups of Related Count Time Series (NC), pp. 1395–1403.
- ICML-c2-2014-BartunovV #distance #process
- Variational Inference for Sequential Distance Dependent Chinese Restaurant Process (SB, DV), pp. 1404–1412.
- ICML-c2-2014-LindermanA #network #process
- Discovering Latent Network Structure in Point Process Data (SWL, RPA), pp. 1413–1421.
- ICML-c2-2014-ChwialkowskiG #independence #kernel #process #random
- A Kernel Independence Test for Random Processes (KC, AG), pp. 1422–1430.
- ICML-c2-2014-ReedSZL #interactive #learning
- Learning to Disentangle Factors of Variation with Manifold Interaction (SR, KS, YZ, HL), pp. 1431–1439.
- ICML-c2-2014-AziziAG #composition #learning #network
- Learning Modular Structures from Network Data and Node Variables (EA, EA, JEG), pp. 1440–1448.
- ICML-c2-2014-MukutaH #analysis #canonical #correlation #probability
- Probabilistic Partial Canonical Correlation Analysis (YM, TH), pp. 1449–1457.
- ICML-c2-2014-BellemareVT
- Skip Context Tree Switching (MGB, JV, ET), pp. 1458–1466.
- ICML-c2-2014-ToshD #bound
- Lower Bounds for the Gibbs Sampler over Mixtures of Gaussians (CT, SD), pp. 1467–1475.
- ICML-c2-2014-ChenWSB
- Marginalized Denoising Auto-encoders for Nonlinear Representations (MC, KQW, FS, YB), pp. 1476–1484.
- ICML-c2-2014-BarberW #difference #equation #estimation #process
- Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations (DB, YW), pp. 1485–1493.
- ICML-c2-2014-WeiIB #multi #performance
- Fast Multi-stage Submodular Maximization (KW, RKI, JAB), pp. 1494–1502.
- ICML-c2-2014-SchoenauerASS #feedback #programming
- Programming by Feedback (MS, RA, MS, JCS), pp. 1503–1511.
- ICML-c2-2014-Hernandez-LobatoHG14a #matrix #probability
- Probabilistic Matrix Factorization with Non-random Missing Data (JMHL, NH, ZG), pp. 1512–1520.
- ICML-c2-2014-DworkinKN
- Pursuit-Evasion Without Regret, with an Application to Trading (LD, MK, YN), pp. 1521–1529.
- ICML-c2-2014-KurrasLB #geometry #graph
- The f-Adjusted Graph Laplacian: a Diagonal Modification with a Geometric Interpretation (SK, UvL, GB), pp. 1530–1538.
- ICML-c2-2014-TanTWVP #matrix
- Riemannian Pursuit for Big Matrix Recovery (MT, IWT, LW, BV, SJP), pp. 1539–1547.
- ICML-c2-2014-LefakisF #programming
- Dynamic Programming Boosting for Discriminative Macro-Action Discovery (LL, FF), pp. 1548–1556.
- ICML-c2-2014-AzarLB #correlation #feedback #online #optimisation #probability
- Online Stochastic Optimization under Correlated Bandit Feedback (MGA, AL, EB), pp. 1557–1565.
- ICML-c2-2014-ChenLX #clustering #graph #nondeterminism
- Weighted Graph Clustering with Non-Uniform Uncertainties (YC, SHL, HX), pp. 1566–1574.
- ICML-c2-2014-Thomas14a #convergence #named
- GeNGA: A Generalization of Natural Gradient Ascent with Positive and Negative Convergence Results (PT), pp. 1575–1583.
- ICML-c2-2014-BaiLS #classification #framework #online
- A Bayesian Framework for Online Classifier Ensemble (QB, HL, SS), pp. 1584–1592.
- ICML-c2-2014-SteinhardtL14a #adaptation #algorithm
- Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm (JS, PL), pp. 1593–1601.
- ICML-c2-2014-LiuSD #approximate #modelling #visual notation
- Gaussian Approximation of Collective Graphical Models (LPL, DS, TGD), pp. 1602–1610.
- ICML-c2-2014-SongGJMHD #learning #locality #on the
- On learning to localize objects with minimal supervision (HOS, RBG, SJ, JM, ZH, TD), pp. 1611–1619.
- ICML-c2-2014-KondorTG #matrix #multi
- Multiresolution Matrix Factorization (RK, NT, VG), pp. 1620–1628.
- ICML-c2-2014-LiuD #learning #problem #set
- Learnability of the Superset Label Learning Problem (LPL, TGD), pp. 1629–1637.
- ICML-c2-2014-AgarwalHKLLS #algorithm #performance
- Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits (AA, DH, SK, JL, LL, RES), pp. 1638–1646.
- ICML-c2-2014-MittelmanKSL #strict
- Structured Recurrent Temporal Restricted Boltzmann Machines (RM, BK, SS, HL), pp. 1647–1655.
- ICML-c2-2014-MinskerSLD #robust #scalability
- Scalable and Robust Bayesian Inference via the Median Posterior (SM, SS, LL, DBD), pp. 1656–1664.
- ICML-c2-2014-SejdinovicSGAG #adaptation #kernel
- Kernel Adaptive Metropolis-Hastings (DS, HS, MLG, CA, AG), pp. 1665–1673.
- ICML-c2-2014-SnoekSZA #optimisation
- Input Warping for Bayesian Optimization of Non-Stationary Functions (JS, KS, RSZ, RPA), pp. 1674–1682.
- ICML-c2-2014-ChenFG #monte carlo #probability
- Stochastic Gradient Hamiltonian Monte Carlo (TC, EBF, CG), pp. 1683–1691.
- ICML-c2-2014-TrigeorgisBZS #learning
- A Deep Semi-NMF Model for Learning Hidden Representations (GT, KB, SZ, BWS), pp. 1692–1700.
- ICML-c2-2014-ZhangK #distributed #optimisation
- Asynchronous Distributed ADMM for Consensus Optimization (RZ, JTK), pp. 1701–1709.
- ICML-c2-2014-QuattoniBCG #sequence
- Spectral Regularization for Max-Margin Sequence Tagging (AQ, BB, XC, AG), pp. 1710–1718.
- ICML-c2-2014-PandeyD #learning #network
- Learning by Stretching Deep Networks (GP, AD), pp. 1719–1727.
- ICML-c2-2014-AsterisPD
- Nonnegative Sparse PCA with Provable Guarantees (MA, DSP, AGD), pp. 1728–1736.
- ICML-c2-2014-SilvaKB #learning
- Active Learning of Parameterized Skills (BCdS, GK, AGB), pp. 1737–1745.
- ICML-c2-2014-RippelGA #learning #order
- Learning Ordered Representations with Nested Dropout (OR, MAG, RPA), pp. 1746–1754.
- ICML-c2-2014-CohenW #commutative #learning
- Learning the Irreducible Representations of Commutative Lie Groups (TC, MW), pp. 1755–1763.
- ICML-c2-2014-GravesJ #network #recognition #speech #towards
- Towards End-To-End Speech Recognition with Recurrent Neural Networks (AG, NJ), pp. 1764–1772.
- ICML-c2-2014-HuS #machine learning #multi #predict
- Multi-period Trading Prediction Markets with Connections to Machine Learning (JH, AJS), pp. 1773–1781.
- ICML-c2-2014-KingmaW #performance
- Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets (DPK, MW), pp. 1782–1790.
- ICML-c2-2014-MnihG #learning #network
- Neural Variational Inference and Learning in Belief Networks (AM, KG), pp. 1791–1799.
- ICML-c2-2014-RaiWGCDC #composition #multi #rank #scalability
- Scalable Bayesian Low-Rank Decomposition of Incomplete Multiway Tensors (PR, YW, SG, GC, DBD, LC), pp. 1800–1808.
- ICML-c2-2014-HeaukulaniKG
- Beta Diffusion Trees (CH, DAK, ZG), pp. 1809–1817.
- ICML-c2-2014-SantosZ #learning
- Learning Character-level Representations for Part-of-Speech Tagging (CNdS, BZ), pp. 1818–1826.
- ICML-c2-2014-YuKC #algorithm
- Saddle Points and Accelerated Perceptron Algorithms (AWY, FKK, JGC), pp. 1827–1835.
- ICML-c2-2014-WangNH #distance #learning #metric #robust
- Robust Distance Metric Learning via Simultaneous L1-Norm Minimization and Maximization (HW, FN, HH), pp. 1836–1844.
- ICML-c2-2014-AminHK #learning
- Learning from Contagion (Without Timestamps) (KA, HH, MK), pp. 1845–1853.
- ICML-c2-2014-JohnsonW #modelling #probability
- Stochastic Variational Inference for Bayesian Time Series Models (MJ, ASW), pp. 1854–1862.
- ICML-c2-2014-KoutnikGGS
- A Clockwork RNN (JK, KG, FJG, JS), pp. 1863–1871.
- ICML-c2-2014-ChagantyL #modelling #using #visual notation
- Estimating Latent-Variable Graphical Models using Moments and Likelihoods (ATC, PL), pp. 1872–1880.
- ICML-c2-2014-Bhojanapalli0 #matrix
- Universal Matrix Completion (SB, PJ), pp. 1881–1889.
- ICML-c2-2014-PapailiopoulosMDC #optimisation #rank
- Finding Dense Subgraphs via Low-Rank Bilinear Optimization (DSP, IM, AGD, CC), pp. 1890–1898.
- ICML-c2-2014-BothaB #composition #modelling #word
- Compositional Morphology for Word Representations and Language Modelling (JAB, PB), pp. 1899–1907.
- ICML-c2-2014-AndoniPV0 #learning #network
- Learning Polynomials with Neural Networks (AA, RP, GV, LZ), pp. 1908–1916.
- ICML-c2-2014-GunasekarRG #constraints #exponential #matrix #product line
- Exponential Family Matrix Completion under Structural Constraints (SG, PR, JG), pp. 1917–1925.
- ICML-c2-2014-BachmanFP #approximate
- Sample-based approximate regularization (PB, AMF, DP), pp. 1926–1934.
- ICML-c2-2014-PaigeW #compilation #probability #programming language
- A Compilation Target for Probabilistic Programming Languages (BP, FW), pp. 1935–1943.
- ICML-c2-2014-NeufeldGSS #adaptation #monte carlo
- Adaptive Monte Carlo via Bandit Allocation (JN, AG, CS, DS), pp. 1944–1952.
- ICML-c2-2014-CelikLL #estimation #network #performance #reduction
- Efficient Dimensionality Reduction for High-Dimensional Network Estimation (SC, BAL, SIL), pp. 1953–1961.
- ICML-c2-2014-CelikkayaS #markov #probability #process
- Deterministic Anytime Inference for Stochastic Continuous-Time Markov Processes (EBC, CRS), pp. 1962–1970.
- ICML-c2-2014-TitsiasL #probability
- Doubly Stochastic Variational Bayes for non-Conjugate Inference (MKT, MLG), pp. 1971–1979.
- ICML-c2-2014-LimL #learning #metric #performance #ranking
- Efficient Learning of Mahalanobis Metrics for Ranking (DL, GRGL), pp. 1980–1988.
- ICML-c2-2014-0001NKA #estimation #probability
- GEV-Canonical Regression for Accurate Binary Class Probability Estimation when One Class is Rare (AA, HN, SK, SA), pp. 1989–1997.
- ICML-c2-2014-KnowlesGP #infinity #metric #normalisation #random #using
- A reversible infinite HMM using normalised random measures (DAK, ZG, KP), pp. 1998–2006.
- ICML-c2-2014-HaeffeleYV #algorithm #image #matrix #rank
- Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing (BDH, EY, RV), pp. 2007–2015.
- ICML-c2-2014-DuLBS #information management #learning #network
- Influence Function Learning in Information Diffusion Networks (ND, YL, MFB, LS), pp. 2016–2024.
45 ×#learning
21 ×#modelling
20 ×#probability
18 ×#multi
16 ×#algorithm
16 ×#network
16 ×#process
15 ×#performance
14 ×#scalability
12 ×#optimisation
21 ×#modelling
20 ×#probability
18 ×#multi
16 ×#algorithm
16 ×#network
16 ×#process
15 ×#performance
14 ×#scalability
12 ×#optimisation