BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
learning
Google learning

Tag #learning

5675 papers:

PADLPADL-2020-NguyenZJXD #artificial reality #named #programming #set
VRASP: A Virtual Reality Environment for Learning Answer Set Programming (VTN, YZ0, KJ, WX, TD), pp. 82–91.
ASPLOSASPLOS-2020-AngstadtJW #automaton #bound #kernel #legacy #string
Accelerating Legacy String Kernels via Bounded Automata Learning (KA, JBJ, WW), pp. 235–249.
ASPLOSASPLOS-2020-HuangJ0 #gpu #memory management #named
SwapAdvisor: Pushing Deep Learning Beyond the GPU Memory Limit via Smart Swapping (CCH, GJ, JL0), pp. 1341–1355.
ASPLOSASPLOS-2020-HuLL0Z0XDLSX #architecture #framework #named
DeepSniffer: A DNN Model Extraction Framework Based on Learning Architectural Hints (XH, LL, SL, LD0, PZ, YJ0, XX, YD, CL, TS, YX), pp. 385–399.
ASPLOSASPLOS-2020-MireshghallahTR #named #privacy
Shredder: Learning Noise Distributions to Protect Inference Privacy (FM, MT, PR, AJ, DMT, HE), pp. 3–18.
ASPLOSASPLOS-2020-PengSD0MXYQ #gpu #memory management #named
Capuchin: Tensor-based GPU Memory Management for Deep Learning (XP, XS, HD, HJ0, WM, QX, FY, XQ), pp. 891–905.
CCCC-2020-BrauckmannGEC #graph #modelling
Compiler-based graph representations for deep learning models of code (AB, AG, SE, JC), pp. 201–211.
CGOCGO-2020-Haj-AliAWSAS #named
NeuroVectorizer: end-to-end vectorization with deep reinforcement learning (AHA, NKA, TLW, YSS, KA, IS), pp. 242–255.
EDMEDM-2019-AiCGZWFW #concept #online #recommendation
Concept-Aware Deep Knowledge Tracing and Exercise Recommendation in an Online Learning System (FA, YC, YG, YZ, ZW, GF, GW).
EDMEDM-2019-AusinABC #induction #policy
Leveraging Deep Reinforcement Learning for Pedagogical Policy Induction in an Intelligent Tutoring System (MSA, HA, TB, MC).
EDMEDM-2019-BroisinH #automation #design #evaluation #programming #semantics
Design and evaluation of a semantic indicator for automatically supporting programming learning (JB, CH).
EDMEDM-2019-CaoPB #analysis #performance
Incorporating Prior Practice Difficulty into Performance Factor Analysis to Model Mandarin Tone Learning (MC, PIPJ, GMB).
EDMEDM-2019-ChoffinPBV #distributed #modelling #named #scheduling #student
DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling Distributed Practice of Skills (BC, FP, YB, JJV).
EDMEDM-2019-ChopraKMG #difference #gender
Gender Differences in Work-Integrated Learning Assessments (SC, AK, MM, LG).
EDMEDM-2019-DavisRF #difference #student
Individual Differences in Student Learning Aid Usage (AKD, YJR, DF).
EDMEDM-2019-EmondV #3d #performance #predict #visualisation
Visualizing Learning Performance Data and Model Predictions as Objects in a 3D Space (BE, JJV).
EDMEDM-2019-Furr #clustering #interactive #online #visualisation
Visualization and clustering of learner pathways in an interactive online learning environment (DF).
EDMEDM-2019-GagnonLBD
Filtering non-relevant short answers in peer learning applications (VG, AL, SB, MCD).
EDMEDM-2019-GuthrieC #behaviour #online #quality #student
Adding duration-based quality labels to learning events for improved description of students' online learning behavior (MWG, ZC).
EDMEDM-2019-HarmonW #education #online
Measuring Item Teaching Value in an Online Learning Environment (JH, RW).
EDMEDM-2019-HarrakBLB #automation #identification #self
Automatic identification of questions in MOOC forums and association with self-regulated learning (FH, FB, VL, RB).
EDMEDM-2019-Ikeda #analysis #education #quality #using
Learning Feature Analysis for Quality Improvement of Web-Based Teaching Materials Using Mouse Cursor Tracking (MI).
EDMEDM-2019-JiangIDLW #student
Measuring students' thermal comfort and its impact on learning (HJ, MI, SVD, SL, JW).
EDMEDM-2019-JiangP
Binary Q-matrix Learning with dAFM (NJ, ZAP).
EDMEDM-2019-JoYKL #analysis #comparative #education #effectiveness #online #word
A Comparative Analysis of Emotional Words for Learning Effectiveness in Online Education (JJ, YY, GK, HL).
EDMEDM-2019-JuZABC #identification
Identifying Critical Pedagogical Decisions through Adversarial Deep Reinforcement Learning (SJ, GZ, HA, TB, MC).
EDMEDM-2019-KraussMA #modelling #recommendation
Smart Learning Object Recommendations based on Time-Dependent Learning Need Models (CK, AM, SA).
EDMEDM-2019-LiangYZPG #case study #concept #partial order #strict
Active Learning of Strict Partial Orders: A Case Study on Concept Prerequisite Relations (CL0, JY, HZ0, BP, CLG).
EDMEDM-2019-MussackFSC #behaviour #problem #similarity #towards
Towards discovering problem similarity through deep learning: combining problem features and user behavior (DM, RF, PS, PCL).
EDMEDM-2019-NazaretskyHA #clustering #education
Kappa Learning: A New Item-Similarity Method for Clustering Educational Items from Response Data (TN, SH, GA).
EDMEDM-2019-NguyenWSM #component #comprehension #game studies #modelling #using
Using Knowledge Component Modeling to Increase Domain Understanding in a Digital Learning Game (HN, YW, JCS, BMM).
EDMEDM-2019-RamirezYCRS #student #towards #using
Toward Instrumenting Makerspaces: Using Motion Sensors to Capture Students' Affective States in Open-Ended Learning Environments (LR, WY, EC, IR, BS).
EDMEDM-2019-Reddick #algorithm #using
Using a Glicko-based Algorithm to Measure In-Course Learning (RR).
EDMEDM-2019-ReillyD #assessment
Exploring Stealth Assessment via Deep Learning in an Open-Ended Virtual Environment (JMR, CD).
EDMEDM-2019-Sher #mobile #using
Anatomy of mobile learners: Using learning analytics to unveil learning in presence of mobile devices (VS).
EDMEDM-2019-SherHG #mobile #power of #predict #student
Investigating effects of considering mobile and desktop learning data on predictive power of learning management system (LMS) features on student success (VS, MH, DG).
EDMEDM-2019-ShimadaMTOTK #optimisation #process #student
Optimizing Assignment of Students to Courses based on Learning Activity Analytics (AS, KM, YT, HO, RiT, SK).
EDMEDM-2019-WeitekampHMRK #predict #student #towards #using
Toward Near Zero-Parameter Prediction Using a Computational Model of Student Learning (DWI, EH, CJM, NR, KRK).
EDMEDM-2019-WhitehillAH #crowdsourcing #predict #what
Do Learners Know What's Good for Them? Crowdsourcing Subjective Ratings of OERs to Predict Learning Gains (JW, CA, BH).
EDMEDM-2019-YangBSHL #detection #student
Active Learning for Student Affect Detection (TYY, RSB, CS, NTH, ASL).
EDMEDM-2019-Yeung #named #using
Deep-IRT: Make Deep Learning Based Knowledge Tracing Explainable Using Item Response Theory (CKY).
EDMEDM-2019-ZaidiCDMBR #modelling #student #using
Accurate Modelling of Language Learning Tasks and Students Using Representations of Grammatical Proficiency (AHZ, AC, CD, RM, PB, AR).
EDMEDM-2019-ZhangDYS #student
Student Knowledge Diagnosis on Response Data via the Model of Sparse Factor Learning (YZ, HD, YY, XS).
ICPCICPC-2019-SchnappingerOPF #classification #maintenance #predict #static analysis #tool support
Learning a classifier for prediction of maintainability based on static analysis tools (MS, MHO, AP, AF), pp. 243–248.
ICPCICPC-2019-XieQMZ #named #programming #visual notation
DeepVisual: a visual programming tool for deep learning systems (CX, HQ, LM0, JZ), pp. 130–134.
ICSMEICSME-2019-BarbezKG #anti #metric
Deep Learning Anti-Patterns from Code Metrics History (AB, FK, YGG), pp. 114–124.
ICSMEICSME-2019-Ha0 #configuration management #fourier
Performance-Influence Model for Highly Configurable Software with Fourier Learning and Lasso Regression (HH, HZ0), pp. 470–480.
ICSMEICSME-2019-MillsEBKCH #classification #traceability
Tracing with Less Data: Active Learning for Classification-Based Traceability Link Recovery (CM, JEA, AB, GK, SC, SH), pp. 103–113.
ICSMEICSME-2019-OumazizF0BK #product line
Handling Duplicates in Dockerfiles Families: Learning from Experts (MAO, JRF, XB0, TFB, JK), pp. 524–535.
ICSMEICSME-2019-PalacioMMBPS #identification #network #using
Learning to Identify Security-Related Issues Using Convolutional Neural Networks (DNP, DM, KM, CBC, DP, CS), pp. 140–144.
ICSMEICSME-2019-TufanoWBPWP #how #source code
Learning How to Mutate Source Code from Bug-Fixes (MT, CW, GB, MDP, MW, DP), pp. 301–312.
MSRMSR-2019-HoangDK0U #fault #framework #named #predict
DeepJIT: an end-to-end deep learning framework for just-in-time defect prediction (TH, HKD, YK, DL0, NU), pp. 34–45.
MSRMSR-2019-PerezC #abstract syntax tree #clone detection #detection #syntax
Cross-language clone detection by learning over abstract syntax trees (DP, SC), pp. 518–528.
MSRMSR-2019-TheetenVC #library
Import2vec learning embeddings for software libraries (BT, FV, TVC), pp. 18–28.
SANERSANER-2019-MaJXLLLZ #combinator #named #testing
DeepCT: Tomographic Combinatorial Testing for Deep Learning Systems (LM0, FJX, MX, BL0, LL0, YL0, JZ), pp. 614–618.
SANERSANER-2019-WhiteTMMP #program repair #sorting
Sorting and Transforming Program Repair Ingredients via Deep Learning Code Similarities (MW, MT, MM, MM, DP), pp. 479–490.
SANERSANER-2019-XieCYLHDZ #approach #graph #named
DeepLink: A Code Knowledge Graph Based Deep Learning Approach for Issue-Commit Link Recovery (RX, LC, WY0, ZL, TH, DD, SZ), pp. 434–444.
SANERSANER-2019-YangASLHCS #industrial #model inference
Improving Model Inference in Industry by Combining Active and Passive Learning (NY, KA, RRHS, LL, DH, LC, AS), pp. 253–263.
SANERSANER-2019-YuBLKYX #empirical #fault #predict #rank
An Empirical Study of Learning to Rank Techniques for Effort-Aware Defect Prediction (XY, KEB, JL0, JWK, XY, ZX), pp. 298–309.
FMFM-2019-Sheinvald #automaton #infinity
Learning Deterministic Variable Automata over Infinite Alphabets (SS), pp. 633–650.
FMFM-2019-TapplerA0EL #markov #process
L*-Based Learning of Markov Decision Processes (MT, BKA, GB0, ME, KGL), pp. 651–669.
IFM-2019-DamascenoMS #adaptation #evolution #reuse
Learning to Reuse: Adaptive Model Learning for Evolving Systems (CDND, MRM, AdSS), pp. 138–156.
SEFMSEFM-2019-AvellanedaP #approach #automaton #satisfiability
Learning Minimal DFA: Taking Inspiration from RPNI to Improve SAT Approach (FA, AP), pp. 243–256.
AIIDEAIIDE-2019-BontragerKASST #game studies #network
“Superstition” in the Network: Deep Reinforcement Learning Plays Deceptive Games (PB, AK, DA, MS, CS, JT), pp. 10–16.
AIIDEAIIDE-2019-FrazierR
Improving Deep Reinforcement Learning in Minecraft with Action Advice (SF, MR), pp. 146–152.
AIIDEAIIDE-2019-GaoKHT #case study #on the
On Hard Exploration for Reinforcement Learning: A Case Study in Pommerman (CG, BK, PHL, MET), pp. 24–30.
AIIDEAIIDE-2019-Hernandez-LealK #modelling
Agent Modeling as Auxiliary Task for Deep Reinforcement Learning (PHL, BK, MET), pp. 31–37.
AIIDEAIIDE-2019-KartalHT #predict
Terminal Prediction as an Auxiliary Task for Deep Reinforcement Learning (BK, PHL, MET), pp. 38–44.
AIIDEAIIDE-2019-KartalHT19a
Action Guidance with MCTS for Deep Reinforcement Learning (BK, PHL, MET), pp. 153–159.
AIIDEAIIDE-2019-LinXR #named #semantics
GenerationMania: Learning to Semantically Choreograph (ZL, KX, MR), pp. 52–58.
AIIDEAIIDE-2019-Marino #game studies #programming #realtime #search-based
Learning Strategies for Real-Time Strategy Games with Genetic Programming (JRHM), pp. 219–220.
AIIDEAIIDE-2019-WangSZ #behaviour #modelling
Beyond Winning and Losing: Modeling Human Motivations and Behaviors with Vector-Valued Inverse Reinforcement Learning (BW, TS, XSZ), pp. 195–201.
AIIDEAIIDE-2019-XuKZHLS #metaprogramming
Macro Action Selection with Deep Reinforcement Learning in StarCraft (SX, HK, ZZ, RH, YL, HS), pp. 94–99.
CoGCoG-2019-AshleyCKB #evolution
Learning to Select Mates in Evolving Non-playable Characters (DRA, VC, BK, VB), pp. 1–8.
CoGCoG-2019-ChenL #game studies #metaprogramming
Macro and Micro Reinforcement Learning for Playing Nine-ball Pool (YC, YL), pp. 1–4.
CoGCoG-2019-ChenYL #abstraction #game studies #object-oriented #video
Object-Oriented State Abstraction in Reinforcement Learning for Video Games (YC, HY, YL), pp. 1–4.
CoGCoG-2019-DockhornLVBGL #game studies #modelling
Learning Local Forward Models on Unforgiving Games (AD, SML, VV, IB, RDG, DPL), pp. 1–4.
CoGCoG-2019-FendtA #education #game studies #student #using
Using Learning Games to Teach Texas Civil War History to Public Middle School Students (MWF, EA), pp. 1–4.
CoGCoG-2019-GainaS #game studies #video
“Did You Hear That?” Learning to Play Video Games from Audio Cues (RDG, MS), pp. 1–4.
CoGCoG-2019-GeorgiadisLBW #assessment
Learning Analytics Should Analyse the Learning: Proposing a Generic Stealth Assessment Tool (KG, GvL, KB, WW), pp. 1–8.
CoGCoG-2019-HarriesLRHD #3d #benchmark #metric #named
MazeExplorer: A Customisable 3D Benchmark for Assessing Generalisation in Reinforcement Learning (LH, SL, JR, KH, SD), pp. 1–4.
CoGCoG-2019-IlhanGP #education #multi
Teaching on a Budget in Multi-Agent Deep Reinforcement Learning (EI, JG, DPL), pp. 1–8.
CoGCoG-2019-JooK #game studies #how #question #using #visualisation
Visualization of Deep Reinforcement Learning using Grad-CAM: How AI Plays Atari Games? (HTJ, KJK), pp. 1–2.
CoGCoG-2019-KamaldinovM #game studies
Deep Reinforcement Learning in Match-3 Game (IK, IM), pp. 1–4.
CoGCoG-2019-KanagawaK #challenge #named
Rogue-Gym: A New Challenge for Generalization in Reinforcement Learning (YK, TK), pp. 1–8.
CoGCoG-2019-KanervistoH #named
ToriLLE: Learning Environment for Hand-to-Hand Combat (AK, VH), pp. 1–8.
CoGCoG-2019-KatonaSHDBDW #predict #using
Time to Die: Death Prediction in Dota 2 using Deep Learning (AK, RJS, VJH, SD, FB, AD, JAW), pp. 1–8.
CoGCoG-2019-KeehlS
Monster Carlo 2: Integrating Learning and Tree Search for Machine Playtesting (OK, AMS), pp. 1–8.
CoGCoG-2019-KhaustovBM #game studies
Pass in Human Style: Learning Soccer Game Patterns from Spatiotemporal Data (VK, GMB, MM), pp. 1–2.
CoGCoG-2019-Konen #education #game studies #research
General Board Game Playing for Education and Research in Generic AI Game Learning (WK), pp. 1–8.
CoGCoG-2019-LiapisKMSY #multimodal
Fusing Level and Ruleset Features for Multimodal Learning of Gameplay Outcomes (AL, DK, KM, KS, GNY), pp. 1–8.
CoGCoG-2019-LucasDVBGBPMK #approach #game studies
A Local Approach to Forward Model Learning: Results on the Game of Life Game (SML, AD, VV, CB, RDG, IB, DPL, SM, RK), pp. 1–8.
CoGCoG-2019-NaderiBRH #approach
A Reinforcement Learning Approach To Synthesizing Climbing Movements (KN, AB, SR, PH), pp. 1–7.
CoGCoG-2019-NaikJ #agile #development #game studies #gamification
Relax, It's a Game: Utilising Gamification in Learning Agile Scrum Software Development (NN, PJ), pp. 1–4.
CoGCoG-2019-NamI #game studies #generative #using
Generation of Diverse Stages in Turn-Based Role-Playing Game using Reinforcement Learning (SN, KI), pp. 1–8.
CoGCoG-2019-PiergigliRMG #multi
Deep Reinforcement Learning to train agents in a multiplayer First Person Shooter: some preliminary results (DP, LAR, DM, DG), pp. 1–8.
CoGCoG-2019-PleinesZB
Action Spaces in Deep Reinforcement Learning to Mimic Human Input Devices (MP, FZ, VPB), pp. 1–8.
CoGCoG-2019-RebstockSB #policy
Learning Policies from Human Data for Skat (DR, CS, MB), pp. 1–8.
CoGCoG-2019-SoemersPSB #policy #self
Learning Policies from Self-Play with Policy Gradients and MCTS Value Estimates (DJNJS, ÉP, MS, CB), pp. 1–8.
CoGCoG-2019-SpickCW #generative #using
Procedural Generation using Spatial GANs for Region-Specific Learning of Elevation Data (RJS, PC, JAW), pp. 1–8.
CoGCoG-2019-ZhangPFAJ #game studies #lr
1GBDT, LR & Deep Learning for Turn-based Strategy Game AI (LZ, HP, QF, CA, YJ), pp. 1–8.
CoGCoG-2019-ZuinV #game studies
Learning a Resource Scale for Collectible Card Games (GLZ, AV), pp. 1–8.
DiGRADiGRA-2019-KultimaL #game studies
Sami Game Jam - Learning, Exploring, Reflecting and Sharing Indigenous Culture through Game Jamming (AK, OL).
FDGFDG-2019-GuitartTRCP #game studies #predict #video
From non-paying to premium: predicting user conversion in video games with ensemble learning (AG, SHT, AFdR, PPC, ÁP), p. 9.
FDGFDG-2019-JemmaliKBARE #concept #design #game studies #programming #using
Using game design mechanics as metaphors to enhance learning of introductory programming concepts (CJ, EK, SB, MVA, ER, MSEN), p. 5.
FDGFDG-2019-KarthS
Addressing the fundamental tension of PCGML with discriminative learning (IK, AMS), p. 9.
FDGFDG-2019-Ruch #development #education #game studies
Trans-pacific project-based learning: game production curriculum development (AWR), p. 9.
FDGFDG-2019-WangCYPTA #game studies #synthesis
Goal-based progression synthesis in a korean learning game (SW, BC, SY, JYP, NT, EA), p. 9.
CoGVS-Games-2019-Hohl #architecture #game studies #interactive #visualisation
Game-Based Learning - Developing a Business Game for Interactive Architectural Visualization (WH), pp. 1–4.
CoGVS-Games-2019-ZhangBJ #artificial reality #interactive
Exploring Effects of Interactivity on Learning with Interactive Storytelling in Immersive Virtual Reality (LZ, DAB, CNJ), pp. 1–8.
CIKMCIKM-2019-00090S #representation
Hyper-Path-Based Representation Learning for Hyper-Networks (JH0, XL0, YS), pp. 449–458.
CIKMCIKM-2019-BhutaniZJ #composition #knowledge base #query
Learning to Answer Complex Questions over Knowledge Bases with Query Composition (NB, XZ, HVJ), pp. 739–748.
CIKMCIKM-2019-BoiarovT #metric #recognition #scalability
Large Scale Landmark Recognition via Deep Metric Learning (AB, ET), pp. 169–178.
CIKMCIKM-2019-BozarthDHJMPPQS #deployment #ubiquitous
Model Asset eXchange: Path to Ubiquitous Deep Learning Deployment (AB, BD, FH, DJ, KM, NP, SP, GdQ, SS, PT, XW, HX0, FRR, VB), pp. 2953–2956.
CIKMCIKM-2019-ChengLCHHCMH #named
DIRT: Deep Learning Enhanced Item Response Theory for Cognitive Diagnosis (SC, QL0, EC, ZH, ZH, YC, HM, GH), pp. 2397–2400.
CIKMCIKM-2019-ChenJZPNYWLXG #e-commerce
Learning to Advertise for Organic Traffic Maximization in E-Commerce Product Feeds (DC, JJ, WZ0, FP, LN, CY, JW0, HL, JX, KG), pp. 2527–2535.
CIKMCIKM-2019-ChenTL #query #social
Query Embedding Learning for Context-based Social Search (YCC, YCT, CTL), pp. 2441–2444.
CIKMCIKM-2019-DuanZYZLWWZS0 #mining #multi #summary
Legal Summarization for Multi-role Debate Dialogue via Controversy Focus Mining and Multi-task Learning (XD, YZ, LY, XZ, XL, TW, RW, QZ, CS, FW0), pp. 1361–1370.
CIKMCIKM-2019-EladGNKR #personalisation
Learning to Generate Personalized Product Descriptions (GE, IG, SN, BK, KR), pp. 389–398.
CIKMCIKM-2019-ElMS #data analysis #named
ATENA: An Autonomous System for Data Exploration Based on Deep Reinforcement Learning (OBE, TM, AS), pp. 2873–2876.
CIKMCIKM-2019-FanHZLLW #named #scalability
MONOPOLY: Learning to Price Public Facilities for Revaluing Private Properties with Large-Scale Urban Data (MF, JH, AZ, YL, PL0, HW), pp. 2655–2663.
CIKMCIKM-2019-FanZDCSL #approach #graph #identification #network #novel
Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel Graph Neural Network Approach (CF, LZ, YD, MC, YS, ZL), pp. 559–568.
CIKMCIKM-2019-GongZ00XWH #community #detection #developer #online #using
Detecting Malicious Accounts in Online Developer Communities Using Deep Learning (QG, JZ, YC0, QL0, YX, XW, PH), pp. 1251–1260.
CIKMCIKM-2019-GuHDM #analysis #named
LinkRadar: Assisting the Analysis of Inter-app Page Links via Transfer Learning (DG, ZH, SD, YM0), pp. 2077–2080.
CIKMCIKM-2019-HanMNKURNS #detection #image #using
Learning More with Less: Conditional PGGAN-based Data Augmentation for Brain Metastases Detection Using Highly-Rough Annotation on MR Images (CH, KM, TN, YK, FU, LR, HN, SS), pp. 119–127.
CIKMCIKM-2019-HosseiniH #feature model #kernel #multi #prototype #representation
Interpretable Multiple-Kernel Prototype Learning for Discriminative Representation and Feature Selection (BH, BH), pp. 1863–1872.
CIKMCIKM-2019-HuangSZWC #network #self
Similarity-Aware Network Embedding with Self-Paced Learning (CH0, BS, XZ, XW, NVC), pp. 2113–2116.
CIKMCIKM-2019-HuangYX #detection #graph
System Deterioration Detection and Root Cause Learning on Time Series Graphs (HH, SY, YX), pp. 2537–2545.
CIKMCIKM-2019-JenkinsFWL #multimodal #representation
Unsupervised Representation Learning of Spatial Data via Multimodal Embedding (PJ, AF, SW, ZL), pp. 1993–2002.
CIKMCIKM-2019-JiangCBWYN #predict #smarttech
Learning to Predict Human Stress Level with Incomplete Sensor Data from Wearable Devices (JYJ, ZC, ALB, WW0, SDY, DN), pp. 2773–2781.
CIKMCIKM-2019-JiangWZSLL #detection #graph #representation
Cross-domain Aspect Category Transfer and Detection via Traceable Heterogeneous Graph Representation Learning (ZJ, JW, LZ, CS, YL, XL), pp. 289–298.
CIKMCIKM-2019-JinOLLLC #graph #semantics #similarity
Learning Region Similarity over Spatial Knowledge Graphs with Hierarchical Types and Semantic Relations (XJ, BO, SL, DL, KHL, LC), pp. 669–678.
CIKMCIKM-2019-KangHLY #recommendation
Semi-Supervised Learning for Cross-Domain Recommendation to Cold-Start Users (SK, JH, DL, HY), pp. 1563–1572.
CIKMCIKM-2019-KimSRLW #predict
Deep Learning for Blast Furnaces: Skip-Dense Layers Deep Learning Model to Predict the Remaining Time to Close Tap-holes for Blast Furnaces (KK, BS, SHR, SL, SSW), pp. 2733–2741.
CIKMCIKM-2019-KuziLSJZ #adaptation #analysis #information retrieval #rank
Analysis of Adaptive Training for Learning to Rank in Information Retrieval (SK, SL, SKKS, PPJ, CZ), pp. 2325–2328.
CIKMCIKM-2019-LiuWSL
Loopless Semi-Stochastic Gradient Descent with Less Hard Thresholding for Sparse Learning (XL, BW, FS, HL), pp. 881–890.
CIKMCIKM-2019-LiuWYZSMZGZYQ #graph #mobile #optimisation #representation
Graph Representation Learning for Merchant Incentive Optimization in Mobile Payment Marketing (ZL, DW, QY, ZZ, YS, JM, WZ, JG, JZ, SY, YQ), pp. 2577–2584.
CIKMCIKM-2019-LiuZYCY #generative #refinement
Generative Question Refinement with Deep Reinforcement Learning in Retrieval-based QA System (YL, CZ, XY, YC, PSY), pp. 1643–1652.
CIKMCIKM-2019-LiWWLYLW #multi #platform
Partially Shared Adversarial Learning For Semi-supervised Multi-platform User Identity Linkage (CL, SW, HW, YL, PSY, ZL, WW), pp. 249–258.
CIKMCIKM-2019-LuoSAZ0 #multi #retrieval
Cross-modal Image-Text Retrieval with Multitask Learning (JL, YS, XA, ZZ, MY0), pp. 2309–2312.
CIKMCIKM-2019-LuoZWZ #framework #named #representation
ResumeGAN: An Optimized Deep Representation Learning Framework for Talent-Job Fit via Adversarial Learning (YL, HZ, YW, XZ), pp. 1101–1110.
CIKMCIKM-2019-LuYGWLC #clustering #realtime
Reinforcement Learning with Sequential Information Clustering in Real-Time Bidding (JL, CY, XG, LW, CL, GC), pp. 1633–1641.
CIKMCIKM-2019-MaAWSCTY #data analysis #graph #similarity
Deep Graph Similarity Learning for Brain Data Analysis (GM, NKA, TLW, DS, MWC, NBTB, PSY), pp. 2743–2751.
CIKMCIKM-2019-MaoSSSS #process
Investigating the Learning Process in Job Search: A Longitudinal Study (JM, DS, SS, FS, MS), pp. 2461–2464.
CIKMCIKM-2019-NeutatzMA #detection #fault #named
ED2: A Case for Active Learning in Error Detection (FN, MM, ZA), pp. 2249–2252.
CIKMCIKM-2019-RaoSPJCTGK #evolution #recommendation
Learning to be Relevant: Evolution of a Course Recommendation System (SR, KS, GP, MJ, SC, VT, JG, DK), pp. 2625–2633.
CIKMCIKM-2019-RizosHS #classification
Augment to Prevent: Short-Text Data Augmentation in Deep Learning for Hate-Speech Classification (GR, KH, BWS), pp. 991–1000.
CIKMCIKM-2019-ShenTB #graph #representation
GRLA 2019: The first International Workshop on Graph Representation Learning and its Applications (HS, JT, PB), pp. 2997–2998.
CIKMCIKM-2019-ShresthaMAV #behaviour #graph #interactive #social
Learning from Dynamic User Interaction Graphs to Forecast Diverse Social Behavior (PS, SM, DA, SV), pp. 2033–2042.
CIKMCIKM-2019-SongS0DX0T #automation #feature model #interactive #named #network #self
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks (WS, CS, ZX0, ZD, YX, MZ0, JT), pp. 1161–1170.
CIKMCIKM-2019-TanYHD #multi #segmentation #semantics
Batch Mode Active Learning for Semantic Segmentation Based on Multi-Clue Sample Selection (YT, LY, QH, ZD), pp. 831–840.
CIKMCIKM-2019-TaoGFCYZ #game studies #multi #named #online #predict
GMTL: A GART Based Multi-task Learning Model for Multi-Social-Temporal Prediction in Online Games (JT, LG, CF, LC, DY, SZ), pp. 2841–2849.
CIKMCIKM-2019-TrittenbachB #detection #multi
One-Class Active Learning for Outlier Detection with Multiple Subspaces (HT, KB), pp. 811–820.
CIKMCIKM-2019-Wang0C #graph #reasoning #recommendation
Learning and Reasoning on Graph for Recommendation (XW, XH0, TSC), pp. 2971–2972.
CIKMCIKM-2019-WangJH0YZWHWLXG #adaptation #realtime
Learning Adaptive Display Exposure for Real-Time Advertising (WW, JJ, JH, CC0, CY, WZ0, JW0, XH, YW, HL, JX, KG), pp. 2595–2603.
CIKMCIKM-2019-WangL #behaviour #network
Spotting Terrorists by Learning Behavior-aware Heterogeneous Network Embedding (PCW, CTL), pp. 2097–2100.
CIKMCIKM-2019-WangRCR0R #graph #predict
Order-free Medicine Combination Prediction with Graph Convolutional Reinforcement Learning (SW, PR, ZC, ZR, JM0, MdR), pp. 1623–1632.
CIKMCIKM-2019-WeiXZZZC0ZXL #named
CoLight: Learning Network-level Cooperation for Traffic Signal Control (HW, NX, HZ, GZ, XZ, CC, WZ0, YZ, KX, ZL), pp. 1913–1922.
CIKMCIKM-2019-WuLZQ #recommendation
Long- and Short-term Preference Learning for Next POI Recommendation (YW, KL, GZ, XQ), pp. 2301–2304.
CIKMCIKM-2019-WuPDTZD #distance #graph #network
Long-short Distance Aggregation Networks for Positive Unlabeled Graph Learning (MW, SP, LD, IWT, XZ, BD), pp. 2157–2160.
CIKMCIKM-2019-WuWZJ #effectiveness #performance #recommendation
Learning to Effectively Estimate the Travel Time for Fastest Route Recommendation (NW, JW, WXZ, YJ), pp. 1923–1932.
CIKMCIKM-2019-XiaoLM #collaboration
Dynamic Collaborative Recurrent Learning (TX, SL, ZM), pp. 1151–1160.
CIKMCIKM-2019-XiaoRMSL #metric #personalisation
Dynamic Bayesian Metric Learning for Personalized Product Search (TX, JR, ZM, HS, SL), pp. 1693–1702.
CIKMCIKM-2019-XiaWY #comprehension #multi
Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning (JX, CW, MY), pp. 2393–2396.
CIKMCIKM-2019-XiongZXL
Learning Traffic Signal Control from Demonstrations (YX, GZ, KX, ZL), pp. 2289–2292.
CIKMCIKM-2019-XuHY #graph #network #scalability
Scalable Causal Graph Learning through a Deep Neural Network (CX, HH, SY), pp. 1853–1862.
CIKMCIKM-2019-YangDTTZQD #composition #predict #relational #visual notation
Learning Compositional, Visual and Relational Representations for CTR Prediction in Sponsored Search (XY, TD, WT, XT, JZ, SQ, ZD), pp. 2851–2859.
CIKMCIKM-2019-ZhangLZLWWX #benchmark #metric #multi #named #representation
Job2Vec: Job Title Benchmarking with Collective Multi-View Representation Learning (DZ, JL, HZ, YL, LW, PW, HX), pp. 2763–2771.
CIKMCIKM-2019-ZhangLZZLWCZ #word
Learning Chinese Word Embeddings from Stroke, Structure and Pinyin of Characters (YZ, YL, JZ, ZZ, XL, WW, ZC, SZ), pp. 1011–1020.
CIKMCIKM-2019-ZhangMLZ0MXT #ranking
Context-Aware Ranking by Constructing a Virtual Environment for Reinforcement Learning (JZ, JM, YL, RZ, MZ0, SM, JX0, QT), pp. 1603–1612.
CIKMCIKM-2019-ZhangYWH #automation #e-commerce #named #ranking #realtime
Autor3: Automated Real-time Ranking with Reinforcement Learning in E-commerce Sponsored Search Advertising (YZ, ZY, LW, LH), pp. 2499–2507.
CIKMCIKM-2019-ZhaoCY #comprehension #e-commerce #query
A Dynamic Product-aware Learning Model for E-commerce Query Intent Understanding (JZ, HC, DY), pp. 1843–1852.
CIKMCIKM-2019-ZhaoSSW #graph #named #precise #retrieval
GRAPHENE: A Precise Biomedical Literature Retrieval Engine with Graph Augmented Deep Learning and External Knowledge Empowerment (SZ, CS, AS, FW), pp. 149–158.
CIKMCIKM-2019-ZhengXZFWZLXL #contest
Learning Phase Competition for Traffic Signal Control (GZ, YX, XZ, JF, HW, HZ, YL0, KX, ZL), pp. 1963–1972.
CIKMCIKM-2019-ZhouJZQJWWYY #multi
Multi-Agent Reinforcement Learning for Order-dispatching via Order-Vehicle Distribution Matching (MZ, JJ, WZ0, ZQ, YJ, CW, GW, YY0, JY), pp. 2645–2653.
CIKMCIKM-2019-ZouK
Learning to Ask: Question-based Sequential Bayesian Product Search (JZ, EK), pp. 369–378.
CIKMCIKM-2019-ZouLAWZ #multi #named #rank
MarlRank: Multi-agent Reinforced Learning to Rank (SZ, ZL, MA, JW0, PZ), pp. 2073–2076.
ECIRECIR-p1-2019-BalikasDMAA #semantics #using
Learning Lexical-Semantic Relations Using Intuitive Cognitive Links (GB, GD, RM, HA, MRA), pp. 3–18.
ECIRECIR-p1-2019-FlorescuJ #graph #representation
A Supervised Keyphrase Extraction System Based on Graph Representation Learning (CF, WJ), pp. 197–212.
ECIRECIR-p2-2019-Landin #recommendation
Learning User and Item Representations for Recommender Systems (AL), pp. 337–342.
ECIRECIR-p2-2019-SyedIGSV #detection #induction #natural language #query
Inductive Transfer Learning for Detection of Well-Formed Natural Language Search Queries (BS, VI, MG0, MS0, VV), pp. 45–52.
ICMLICML-2019-0002CZG #adaptation #invariant #on the
On Learning Invariant Representations for Domain Adaptation (HZ0, RTdC, KZ0, GJG), pp. 7523–7532.
ICMLICML-2019-0002H
Target-Based Temporal-Difference Learning (DL0, NH), pp. 3713–3722.
ICMLICML-2019-0002VBB #performance
Provably Efficient Imitation Learning from Observation Alone (WS0, AV, BB, DB), pp. 6036–6045.
ICMLICML-2019-0002VY #constraints #policy
Batch Policy Learning under Constraints (HML0, CV, YY), pp. 3703–3712.
ICMLICML-2019-AbelsRLNS #multi
Dynamic Weights in Multi-Objective Deep Reinforcement Learning (AA, DMR, TL, AN, DS), pp. 11–20.
ICMLICML-2019-AcharyaSFS #communication #distributed #sublinear
Distributed Learning with Sublinear Communication (JA, CDS, DJF, KS), pp. 40–50.
ICMLICML-2019-AdamsJWS #fault #metric #modelling
Learning Models from Data with Measurement Error: Tackling Underreporting (RA, YJ, XW, SS), pp. 61–70.
ICMLICML-2019-AdelW #approach #named #visual notation
TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning (TA, AW), pp. 71–81.
ICMLICML-2019-AgarwalLS0
Learning to Generalize from Sparse and Underspecified Rewards (RA, CL, DS, MN0), pp. 130–140.
ICMLICML-2019-Allen-ZhuLS #convergence
A Convergence Theory for Deep Learning via Over-Parameterization (ZAZ, YL, ZS), pp. 242–252.
ICMLICML-2019-AllenSST #infinity #prototype
Infinite Mixture Prototypes for Few-shot Learning (KRA, ES, HS, JBT), pp. 232–241.
ICMLICML-2019-AssranLBR #distributed #probability
Stochastic Gradient Push for Distributed Deep Learning (MA, NL, NB, MR), pp. 344–353.
ICMLICML-2019-BalduzziGB0PJG #game studies #symmetry
Open-ended learning in symmetric zero-sum games (DB, MG, YB, WC0, JP, MJ, TG), pp. 434–443.
ICMLICML-2019-BaranchukPSB #graph #similarity
Learning to Route in Similarity Graphs (DB, DP, AS, AB), pp. 475–484.
ICMLICML-2019-BehpourLZ #predict #probability
Active Learning for Probabilistic Structured Prediction of Cuts and Matchings (SB, AL, BDZ), pp. 563–572.
ICMLICML-2019-BelilovskyEO
Greedy Layerwise Learning Can Scale To ImageNet (EB, ME, EO), pp. 583–593.
ICMLICML-2019-BenzingGMMS #approximate #realtime
Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning (FB, MMG, AM, AM, AS), pp. 604–613.
ICMLICML-2019-BhagojiCMC #lens
Analyzing Federated Learning through an Adversarial Lens (ANB, SC, PM, SBC), pp. 634–643.
ICMLICML-2019-BibautMVL #evaluation #performance
More Efficient Off-Policy Evaluation through Regularized Targeted Learning (AB, IM, NV, MJvdL), pp. 654–663.
ICMLICML-2019-BrownGNN
Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations (DSB, WG, PN, SN), pp. 783–792.
ICMLICML-2019-BunneA0J #generative #modelling
Learning Generative Models across Incomparable Spaces (CB, DAM, AK0, SJ), pp. 851–861.
ICMLICML-2019-ByrdL #question #what
What is the Effect of Importance Weighting in Deep Learning? (JB, ZCL), pp. 872–881.
ICMLICML-2019-CaoS #multi #problem
Dynamic Learning with Frequent New Product Launches: A Sequential Multinomial Logit Bandit Problem (JC, WS), pp. 912–920.
ICMLICML-2019-ChandakTKJT
Learning Action Representations for Reinforcement Learning (YC, GT, JK, SMJ, PST), pp. 941–950.
ICMLICML-2019-CharoenphakdeeL #on the #symmetry
On Symmetric Losses for Learning from Corrupted Labels (NC, JL, MS), pp. 961–970.
ICMLICML-2019-ChatterjiPB #kernel #online
Online learning with kernel losses (NSC, AP, PLB), pp. 971–980.
ICMLICML-2019-Chen0LJQS #generative #recommendation
Generative Adversarial User Model for Reinforcement Learning Based Recommendation System (XC, SL0, HL, SJ, YQ, LS), pp. 1052–1061.
ICMLICML-2019-ChengVOCYB
Control Regularization for Reduced Variance Reinforcement Learning (RC, AV, GO, SC, YY, JB), pp. 1141–1150.
ICMLICML-2019-ChenJ
Information-Theoretic Considerations in Batch Reinforcement Learning (JC, NJ), pp. 1042–1051.
ICMLICML-2019-ChuBG #functional #probability
Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning (CC, JHB, PWG), pp. 1213–1222.
ICMLICML-2019-CobbeKHKS
Quantifying Generalization in Reinforcement Learning (KC, OK, CH, TK, JS), pp. 1282–1289.
ICMLICML-2019-CohenKM
Learning Linear-Quadratic Regulators Efficiently with only √T Regret (AC, TK, YM), pp. 1300–1309.
ICMLICML-2019-ColasOSFC #composition #motivation #multi #named
CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning (CC, PYO, OS, PF, MC), pp. 1331–1340.
ICMLICML-2019-CortesDGMY #feedback #graph #online
Online Learning with Sleeping Experts and Feedback Graphs (CC, GD, CG, MM, SY), pp. 1370–1378.
ICMLICML-2019-CortesDMZG #graph
Active Learning with Disagreement Graphs (CC, GD, MM, NZ, CG), pp. 1379–1387.
ICMLICML-2019-CreagerMJWSPZ #representation
Flexibly Fair Representation Learning by Disentanglement (EC, DM, JHJ, MAW, KS, TP, RSZ), pp. 1436–1445.
ICMLICML-2019-CutkoskyS #online
Matrix-Free Preconditioning in Online Learning (AC, TS), pp. 1455–1464.
ICMLICML-2019-CvitkovicK #statistics
Minimal Achievable Sufficient Statistic Learning (MC, GK), pp. 1465–1474.
ICMLICML-2019-CvitkovicSA #source code
Open Vocabulary Learning on Source Code with a Graph-Structured Cache (MC, BS, AA), pp. 1475–1485.
ICMLICML-2019-DadashiBTRS
The Value Function Polytope in Reinforcement Learning (RD, MGB, AAT, NLR, DS), pp. 1486–1495.
ICMLICML-2019-Dann0WB #policy #towards
Policy Certificates: Towards Accountable Reinforcement Learning (CD, LL0, WW, EB), pp. 1507–1516.
ICMLICML-2019-DaoGERR #algorithm #linear #performance #using
Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations (TD, AG, ME, AR, CR), pp. 1517–1527.
ICMLICML-2019-DereliOG #algorithm #analysis #biology #kernel #multi
A Multitask Multiple Kernel Learning Algorithm for Survival Analysis with Application to Cancer Biology (OD, CO, MG), pp. 1576–1585.
ICMLICML-2019-DiaconuW #approach
Learning to Convolve: A Generalized Weight-Tying Approach (ND, DEW), pp. 1586–1595.
ICMLICML-2019-DoanMR #analysis #approximate #distributed #finite #linear #multi
Finite-Time Analysis of Distributed TD(0) with Linear Function Approximation on Multi-Agent Reinforcement Learning (TTD, STM, JR), pp. 1626–1635.
ICMLICML-2019-DoerrVTTD
Trajectory-Based Off-Policy Deep Reinforcement Learning (AD, MV, MT, ST, CD), pp. 1636–1645.
ICMLICML-2019-Duetting0NPR
Optimal Auctions through Deep Learning (PD, ZF0, HN, DCP, SSR), pp. 1706–1715.
ICMLICML-2019-DuklerLLM #generative #modelling
Wasserstein of Wasserstein Loss for Learning Generative Models (YD, WL, ATL, GM), pp. 1716–1725.
ICMLICML-2019-DuN
Task-Agnostic Dynamics Priors for Deep Reinforcement Learning (YD, KN), pp. 1696–1705.
ICMLICML-2019-DunckerBBS #modelling #probability
Learning interpretable continuous-time models of latent stochastic dynamical systems (LD, GB, JB, MS), pp. 1726–1734.
ICMLICML-2019-ElfekiCRE #named #process #using
GDPP: Learning Diverse Generations using Determinantal Point Processes (ME, CC, MR, ME), pp. 1774–1783.
ICMLICML-2019-FatemiSSK
Dead-ends and Secure Exploration in Reinforcement Learning (MF, SS, HvS, SEK), pp. 1873–1881.
ICMLICML-2019-Feige #invariant #multi #representation
Invariant-Equivariant Representation Learning for Multi-Class Data (IF), pp. 1882–1891.
ICMLICML-2019-FoersterSHBDWBB #multi
Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning (JNF, HFS, EH, NB, ID, SW, MB, MB), pp. 1942–1951.
ICMLICML-2019-FranceschiNPH #graph #network
Learning Discrete Structures for Graph Neural Networks (LF, MN, MP, XH), pp. 1972–1982.
ICMLICML-2019-FrancP #nondeterminism #on the #predict
On discriminative learning of prediction uncertainty (VF, DP), pp. 1963–1971.
ICMLICML-2019-FujimotoMP
Off-Policy Deep Reinforcement Learning without Exploration (SF, DM, DP), pp. 2052–2062.
ICMLICML-2019-GamrianG
Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation (SG, YG), pp. 2063–2072.
ICMLICML-2019-GaoJWWYZ #generative
Deep Generative Learning via Variational Gradient Flow (YG, YJ, YW, YW0, CY, SZ), pp. 2093–2101.
ICMLICML-2019-GeladaKBNB #modelling #named #representation
DeepMDP: Learning Continuous Latent Space Models for Representation Learning (CG, SK, JB, ON, MGB), pp. 2170–2179.
ICMLICML-2019-GhadikolaeiGFS #big data #dataset
Learning and Data Selection in Big Datasets (HSG, HGG, CF, MS), pp. 2191–2200.
ICMLICML-2019-GhaziPW #composition #recursion #sketching
Recursive Sketches for Modular Deep Learning (BG, RP, JRW), pp. 2211–2220.
ICMLICML-2019-GilboaB0 #performance #taxonomy
Efficient Dictionary Learning with Gradient Descent (DG, SB, JW0), pp. 2252–2259.
ICMLICML-2019-GillickREEB #sequence
Learning to Groove with Inverse Sequence Transformations (JG, AR, JHE, DE, DB), pp. 2269–2279.
ICMLICML-2019-GolovnevPS
The information-theoretic value of unlabeled data in semi-supervised learning (AG, DP, BS), pp. 2328–2336.
ICMLICML-2019-GreenfeldGBYK #multi
Learning to Optimize Multigrid PDE Solvers (DG, MG, RB, IY, RK), pp. 2415–2423.
ICMLICML-2019-GreffKKWBZMBL #multi #representation
Multi-Object Representation Learning with Iterative Variational Inference (KG, RLK, RK, NW, CB, DZ, LM, MB, AL), pp. 2424–2433.
ICMLICML-2019-GuoSH #dependence #graph #relational
Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs (LG, ZS, WH0), pp. 2505–2514.
ICMLICML-2019-HacohenW #education #network #on the #power of
On The Power of Curriculum Learning in Training Deep Networks (GH, DW), pp. 2535–2544.
ICMLICML-2019-HafnerLFVHLD
Learning Latent Dynamics for Planning from Pixels (DH, TPL, IF, RV, DH, HL, JD), pp. 2555–2565.
ICMLICML-2019-HanS
Dimension-Wise Importance Sampling Weight Clipping for Sample-Efficient Reinforcement Learning (SH, YS), pp. 2586–2595.
ICMLICML-2019-HanSDXWSLZ #game studies #multi #video
Grid-Wise Control for Multi-Agent Reinforcement Learning in Video Game AI (LH, PS, YD, JX, QW, XS, HL, TZ), pp. 2576–2585.
ICMLICML-2019-HeidariNG #algorithm #on the #policy #social
On the Long-term Impact of Algorithmic Decision Policies: Effort Unfairness and Feature Segregation through Social Learning (HH, VN, KPG), pp. 2692–2701.
ICMLICML-2019-HendrickxOS #graph
Graph Resistance and Learning from Pairwise Comparisons (JMH, AO, VS), pp. 2702–2711.
ICMLICML-2019-HoferKND #persistent #representation
Connectivity-Optimized Representation Learning via Persistent Homology (CDH, RK, MN, MD), pp. 2751–2760.
ICMLICML-2019-HoLCSA #performance #policy
Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules (DH, EL, XC0, IS, PA), pp. 2731–2741.
ICMLICML-2019-HoulsbyGJMLGAG
Parameter-Efficient Transfer Learning for NLP (NH, AG, SJ, BM, QdL, AG, MA, SG), pp. 2790–2799.
ICMLICML-2019-HuangDGZ
Unsupervised Deep Learning by Neighbourhood Discovery (JH, QD0, SG, XZ), pp. 2849–2858.
ICMLICML-2019-InnesL #problem
Learning Structured Decision Problems with Unawareness (CI, AL), pp. 2941–2950.
ICMLICML-2019-IqbalS #multi
Actor-Attention-Critic for Multi-Agent Reinforcement Learning (SI, FS), pp. 2961–2970.
ICMLICML-2019-IshidaNMS #modelling
Complementary-Label Learning for Arbitrary Losses and Models (TI, GN, AKM, MS), pp. 2971–2980.
ICMLICML-2019-JacqGPP
Learning from a Learner (AJ, MG, AP, OP), pp. 2990–2999.
ICMLICML-2019-JagielskiKMORSU
Differentially Private Fair Learning (MJ, MJK, JM, AO, AR0, SSM, JU), pp. 3000–3008.
ICMLICML-2019-JangLHS #what
Learning What and Where to Transfer (YJ, HL, SJH, JS), pp. 3030–3039.
ICMLICML-2019-JaquesLHGOSLF #motivation #multi #social
Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning (NJ, AL, EH, ÇG, PAO, DS, JZL, NdF), pp. 3040–3049.
ICMLICML-2019-JayRGST #internet
A Deep Reinforcement Learning Perspective on Internet Congestion Control (NJ, NHR, BG, MS, AT), pp. 3050–3059.
ICMLICML-2019-JeongS19a
Learning Discrete and Continuous Factors of Data via Alternating Disentanglement (YJ, HOS), pp. 3091–3099.
ICMLICML-2019-JiangL #logic
Neural Logic Reinforcement Learning (ZJ, SL), pp. 3110–3119.
ICMLICML-2019-KaplanisSC #policy
Policy Consolidation for Continual Reinforcement Learning (CK, MS, CC), pp. 3242–3251.
ICMLICML-2019-KaplanMMS #concept #geometry
Differentially Private Learning of Geometric Concepts (HK, YM, YM, US), pp. 3233–3241.
ICMLICML-2019-KempkaKW #adaptation #algorithm #invariant #linear #modelling #online
Adaptive Scale-Invariant Online Algorithms for Learning Linear Models (MK, WK, MKW), pp. 3321–3330.
ICMLICML-2019-KhadkaMNDTMLT #collaboration
Collaborative Evolutionary Reinforcement Learning (SK, SM, TN, ZD, ET, SM, YL, KT), pp. 3341–3350.
ICMLICML-2019-KipfLDZSGKB #composition #execution #named
CompILE: Compositional Imitation Learning and Execution (TK, YL, HD, VFZ, ASG, EG, PK, PWB), pp. 3418–3428.
ICMLICML-2019-KonstantinovL #robust
Robust Learning from Untrusted Sources (NK, CL), pp. 3488–3498.
ICMLICML-2019-LawLSZ #distance
Lorentzian Distance Learning for Hyperbolic Representations (MTL, RL, JS, RSZ), pp. 3672–3681.
ICMLICML-2019-LawrenceEC #dependence #multi #named #parametricity
DP-GP-LVM: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures (ARL, CHE, NDFC), pp. 3682–3691.
ICMLICML-2019-LiDMMHH #named #network
LGM-Net: Learning to Generate Matching Networks for Few-Shot Learning (HYL, WD, XM, CM, FH, BGH), pp. 3825–3834.
ICMLICML-2019-LiGDVK #graph #network #similarity
Graph Matching Networks for Learning the Similarity of Graph Structured Objects (YL, CG, TD, OV, PK), pp. 3835–3845.
ICMLICML-2019-LiLS #online #rank
Online Learning to Rank with Features (SL, TL, CS), pp. 3856–3865.
ICMLICML-2019-LiLWZG #black box #named #network
NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks (YL, LL, LW, TZ, BG), pp. 3866–3876.
ICMLICML-2019-LimA #kernel #markov #process #robust
Kernel-Based Reinforcement Learning in Robust Markov Decision Processes (SHL, AA), pp. 3973–3981.
ICMLICML-2019-LiSK #physics
Adversarial camera stickers: A physical camera-based attack on deep learning systems (JL0, FRS, JZK), pp. 3896–3904.
ICMLICML-2019-LiSSG #exponential #kernel #product line
Learning deep kernels for exponential family densities (WL, DJS, HS, AG), pp. 6737–6746.
ICMLICML-2019-LiuS #multi
Sparse Extreme Multi-label Learning with Oracle Property (WL, XS0), pp. 4032–4041.
ICMLICML-2019-LiuSH
The Implicit Fairness Criterion of Unconstrained Learning (LTL, MS, MH), pp. 4051–4060.
ICMLICML-2019-LiuSX #performance
Taming MAML: Efficient unbiased meta-reinforcement learning (HL, RS, CX), pp. 4061–4071.
ICMLICML-2019-LiZWSX #framework
Learn to Grow: A Continual Structure Learning Framework for Overcoming Catastrophic Forgetting (XL, YZ, TW, RS, CX), pp. 3925–3934.
ICMLICML-2019-LocatelloBLRGSB
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations (FL, SB, ML, GR, SG, BS, OB), pp. 4114–4124.
ICMLICML-2019-MahloujifarMM #multi
Data Poisoning Attacks in Multi-Party Learning (SM, MM, AM), pp. 4274–4283.
ICMLICML-2019-MalikKSNSE #modelling
Calibrated Model-Based Deep Reinforcement Learning (AM, VK, JS, DN, HS, SE), pp. 4314–4323.
ICMLICML-2019-MannGGHJLS #recommendation
Learning from Delayed Outcomes via Proxies with Applications to Recommender Systems (TAM, SG, AG, HH, RJ, BL, PS), pp. 4324–4332.
ICMLICML-2019-MaryCK
Fairness-Aware Learning for Continuous Attributes and Treatments (JM, CC, NEK), pp. 4382–4391.
ICMLICML-2019-MavrinYKWY #performance
Distributional Reinforcement Learning for Efficient Exploration (BM, HY, LK, KW, YY), pp. 4424–4434.
ICMLICML-2019-MenschBP #geometry
Geometric Losses for Distributional Learning (AM, MB, GP), pp. 4516–4525.
ICMLICML-2019-MetelliGR #configuration management
Reinforcement Learning in Configurable Continuous Environments (AMM, EG, MR), pp. 4546–4555.
ICMLICML-2019-MishneCC
Co-manifold learning with missing data (GM, ECC, RRC), pp. 4605–4614.
ICMLICML-2019-MohriSS
Agnostic Federated Learning (MM, GS, ATS), pp. 4615–4625.
ICMLICML-2019-NabiMS #policy
Learning Optimal Fair Policies (RN, DM, IS), pp. 4674–4682.
ICMLICML-2019-NaganoY0K
A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning (YN, SY, YF0, MK), pp. 4693–4702.
ICMLICML-2019-NamKMPSF #classification #multi #permutation
Learning Context-dependent Label Permutations for Multi-label Classification (JN, YBK, ELM, SP, RS, JF), pp. 4733–4742.
ICMLICML-2019-NedelecKP
Learning to bid in revenue-maximizing auctions (TN, NEK, VP), pp. 4781–4789.
ICMLICML-2019-Nguyen #on the #set
On Connected Sublevel Sets in Deep Learning (QN), pp. 4790–4799.
ICMLICML-2019-NiekerkJER
Composing Value Functions in Reinforcement Learning (BvN, SJ, ACE, BR), pp. 6401–6409.
ICMLICML-2019-NyeHTS #sketching
Learning to Infer Program Sketches (MIN, LBH, JBT, ASL), pp. 4861–4870.
ICMLICML-2019-OglicG #kernel #scalability
Scalable Learning in Reproducing Kernel Krein Spaces (DO, TG0), pp. 4912–4921.
ICMLICML-2019-OymakS #question
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path? (SO, MS), pp. 4951–4960.
ICMLICML-2019-PaulOW #optimisation #policy #robust
Fingerprint Policy Optimisation for Robust Reinforcement Learning (SP, MAO, SW), pp. 5082–5091.
ICMLICML-2019-PengHSS
Domain Agnostic Learning with Disentangled Representations (XP, ZH, XS, KS), pp. 5102–5112.
ICMLICML-2019-PingPSZRW #normalisation #representation
Differentiable Dynamic Normalization for Learning Deep Representation (LP, ZP, WS, RZ, JR, LW), pp. 4203–4211.
ICMLICML-2019-QuMX
Nonlinear Distributional Gradient Temporal-Difference Learning (CQ, SM, HX), pp. 5251–5260.
ICMLICML-2019-RadanovicDPS #markov #process
Learning to Collaborate in Markov Decision Processes (GR, RD, DCP, AS), pp. 5261–5270.
ICMLICML-2019-RakellyZFLQ #performance #probability
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables (KR, AZ, CF, SL, DQ), pp. 5331–5340.
ICMLICML-2019-ReslerM #online
Adversarial Online Learning with noise (AR, YM), pp. 5429–5437.
ICMLICML-2019-RollandKISC #performance #probability #testing
Efficient learning of smooth probability functions from Bernoulli tests with guarantees (PR, AK, AI, AS, VC), pp. 5459–5467.
ICMLICML-2019-RowlandDKMBD #statistics
Statistics and Samples in Distributional Reinforcement Learning (MR, RD, SK, RM, MGB, WD), pp. 5528–5536.
ICMLICML-2019-SaunshiPAKK #analysis #representation
A Theoretical Analysis of Contrastive Unsupervised Representation Learning (NS, OP, SA, MK, HK), pp. 5628–5637.
ICMLICML-2019-SchroeterSM #locality
Weakly-Supervised Temporal Localization via Occurrence Count Learning (JS, KAS, ADM), pp. 5649–5659.
ICMLICML-2019-ShahGAD #bias #on the
On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference (RS, NG, PA, ADD), pp. 5670–5679.
ICMLICML-2019-ShaniEM #revisited
Exploration Conscious Reinforcement Learning Revisited (LS, YE, SM), pp. 5680–5689.
ICMLICML-2019-ShenLL
Learning to Clear the Market (WS, SL, RPL), pp. 5710–5718.
ICMLICML-2019-ShenS
Learning with Bad Training Data via Iterative Trimmed Loss Minimization (YS, SS), pp. 5739–5748.
ICMLICML-2019-Shi0 #multi #performance
Fast Direct Search in an Optimally Compressed Continuous Target Space for Efficient Multi-Label Active Learning (WS, QY0), pp. 5769–5778.
ICMLICML-2019-SinglaWFF #approximate #comprehension #higher-order
Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation (SS0, EW, SF, SF), pp. 5848–5856.
ICMLICML-2019-SongK0 #named #robust
SELFIE: Refurbishing Unclean Samples for Robust Deep Learning (HS, MK, JGL0), pp. 5907–5915.
ICMLICML-2019-SonKKHY #multi #named
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning (KS, DK, WJK, DH, YY), pp. 5887–5896.
ICMLICML-2019-Stickland0 #adaptation #multi #performance
BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning (ACS, IM0), pp. 5986–5995.
ICMLICML-2019-Streeter #linear
Learning Optimal Linear Regularizers (MS), pp. 5996–6004.
ICMLICML-2019-SundinSSVSK
Active Learning for Decision-Making from Imbalanced Observational Data (IS, PS, ES, AV, SS, SK), pp. 6046–6055.
ICMLICML-2019-SuW #distance #metric #sequence
Learning Distance for Sequences by Learning a Ground Metric (BS, YW), pp. 6015–6025.
ICMLICML-2019-SuWSJ #adaptation #evaluation #named #policy
CAB: Continuous Adaptive Blending for Policy Evaluation and Learning (YS, LW, MS, TJ), pp. 6005–6014.
ICMLICML-2019-TesslerEM #robust
Action Robust Reinforcement Learning and Applications in Continuous Control (CT, YE, SM), pp. 6215–6224.
ICMLICML-2019-ThulasidasanBBC #using
Combating Label Noise in Deep Learning using Abstention (ST, TB, JAB, GC, JMY), pp. 6234–6243.
ICMLICML-2019-TranDRC #generative
Bayesian Generative Active Deep Learning (TT, TTD, IDR0, GC), pp. 6295–6304.
ICMLICML-2019-TrouleauEGKT #process
Learning Hawkes Processes Under Synchronization Noise (WT, JE, MG, NK, PT), pp. 6325–6334.
ICMLICML-2019-VarmaSHRR #dependence #modelling
Learning Dependency Structures for Weak Supervision Models (PV, FS, AH, AR, CR), pp. 6418–6427.
ICMLICML-2019-VinayakKVK #estimation #parametricity
Maximum Likelihood Estimation for Learning Populations of Parameters (RKV, WK, GV, SMK), pp. 6448–6457.
ICMLICML-2019-VorobevUGS #ranking
Learning to select for a predefined ranking (AV, AU, GG, PS), pp. 6477–6486.
ICMLICML-2019-Wang0 #modelling
Nonlinear Stein Variational Gradient Descent for Learning Diversified Mixture Models (DW, QL0), pp. 6576–6585.
ICMLICML-2019-WangCAD #estimation #policy #random
Random Expert Distillation: Imitation Learning via Expert Policy Support Estimation (RW, CC, PVA, YD), pp. 6536–6544.
ICMLICML-2019-WangDWK #logic #named #reasoning #satisfiability #using
SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver (PWW, PLD, BW, JZK), pp. 6545–6554.
ICMLICML-2019-WangZ0Q #random #recommendation #robust
Doubly Robust Joint Learning for Recommendation on Data Missing Not at Random (XW, RZ0, YS0, JQ0), pp. 6638–6647.
ICMLICML-2019-WangZXS #on the
On the Generalization Gap in Reparameterizable Reinforcement Learning (HW, SZ, CX, RS), pp. 6648–6658.
ICMLICML-2019-WiqvistMPF #approximate #architecture #network #statistics #summary
Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation (SW, PAM, UP, JF), pp. 6798–6807.
ICMLICML-2019-WonXL
Projection onto Minkowski Sums with Application to Constrained Learning (JHW, JX, KL), pp. 3642–3651.
ICMLICML-2019-WuCBTS
Imitation Learning from Imperfect Demonstration (YHW, NC, HB, VT, MS), pp. 6818–6827.
ICMLICML-2019-WuDSYHSRK #matrix #metric
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling (SW, AD, SS, FXY, DNHR, DS, AR, SK), pp. 6828–6839.
ICMLICML-2019-XuLZC #graph
Gromov-Wasserstein Learning for Graph Matching and Node Embedding (HX, DL, HZ, LC), pp. 6932–6941.
ICMLICML-2019-XuRDLF
Learning a Prior over Intent via Meta-Inverse Reinforcement Learning (KX, ER, ADD, SL, CF), pp. 6952–6962.
ICMLICML-2019-YangD #proving #theorem
Learning to Prove Theorems via Interacting with Proof Assistants (KY, JD), pp. 6984–6994.
ICMLICML-2019-YinCRB #distributed
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning (DY, YC0, KR, PLB), pp. 7074–7084.
ICMLICML-2019-YoonSM #adaptation #named #network
TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning (SWY, JS, JM), pp. 7115–7123.
ICMLICML-2019-YoungBN #generative #modelling #synthesis
Learning Neurosymbolic Generative Models via Program Synthesis (HY, OB, MN), pp. 7144–7153.
ICMLICML-2019-YuCGY #graph #named #network
DAG-GNN: DAG Structure Learning with Graph Neural Networks (YY, JC, TG, MY), pp. 7154–7163.
ICMLICML-2019-YunZYLA #analysis #optimisation #statistics
Trimming the l₁ Regularizer: Statistical Analysis, Optimization, and Applications to Deep Learning (JY, PZ, EY, ACL, AYA), pp. 7242–7251.
ICMLICML-2019-YurochkinAGGHK #network #parametricity
Bayesian Nonparametric Federated Learning of Neural Networks (MY, MA, SG, KHG, TNH, YK), pp. 7252–7261.
ICMLICML-2019-YuSE #multi
Multi-Agent Adversarial Inverse Reinforcement Learning (LY, JS, SE), pp. 7194–7201.
ICMLICML-2019-YuTRKSAZL #distributed #network
Distributed Learning over Unreliable Networks (CY, HT, CR, SK, AS, DA, CZ, JL0), pp. 7202–7212.
ICMLICML-2019-ZablockiBSPG #recognition
Context-Aware Zero-Shot Learning for Object Recognition (EZ, PB, LS, BP, PG), pp. 7292–7303.
ICMLICML-2019-ZanetteB #bound #problem #using
Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds (AZ, EB), pp. 7304–7312.
ICMLICML-2019-ZengLLY #convergence #coordination
Global Convergence of Block Coordinate Descent in Deep Learning (JZ, TTKL, SL, YY0), pp. 7313–7323.
ICMLICML-2019-ZhangHY #named #performance #recognition #visual notation
LatentGNN: Learning Efficient Non-local Relations for Visual Recognition (SZ, XH, SY), pp. 7374–7383.
ICMLICML-2019-ZhangL #incremental #kernel #online #random #sketching
Incremental Randomized Sketching for Online Kernel Learning (XZ, SL), pp. 7394–7403.
ICMLICML-2019-ZhangS #network
Co-Representation Network for Generalized Zero-Shot Learning (FZ, GS), pp. 7434–7443.
ICMLICML-2019-ZhangVSA0L #modelling #named
SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning (MZ, SV, LS, PA, MJJ0, SL), pp. 7444–7453.
ICMLICML-2019-ZhangYT #novel #policy
Learning Novel Policies For Tasks (YZ, WY, GT), pp. 7483–7492.
ICMLICML-2019-ZhaoST #multi
Maximum Entropy-Regularized Multi-Goal Reinforcement Learning (RZ, XS0, VT), pp. 7553–7562.
ICMLICML-2019-ZhuangCO #online #optimisation #probability
Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization (ZZ, AC, FO), pp. 7664–7672.
ICMLICML-2019-ZhuSLHB #fault tolerance #graph
Improved Dynamic Graph Learning through Fault-Tolerant Sparsification (CJZ, SS, KyL, SH, JB), pp. 7624–7633.
ICMLICML-2019-ZhuWS #classification
Learning Classifiers for Target Domain with Limited or No Labels (PZ, HW, VS), pp. 7643–7653.
KDDKDD-2019-BabaevSTU
E.T.-RNN: Applying Deep Learning to Credit Loan Applications (DB, MS, AT, DU), pp. 2183–2190.
KDDKDD-2019-CenZZYZ0 #multi #network #representation
Representation Learning for Attributed Multiplex Heterogeneous Network (YC, XZ, JZ, HY, JZ, JT0), pp. 1358–1368.
KDDKDD-2019-ChenreddyPNCA #named #optimisation
SMOILE: A Shopper Marketing Optimization and Inverse Learning Engine (ARC, PP, SN, RC, RA), pp. 2934–2942.
KDDKDD-2019-Chien #comprehension #mining
Deep Bayesian Mining, Learning and Understanding (JTC), pp. 3197–3198.
KDDKDD-2019-DengRN #graph #predict #social
Learning Dynamic Context Graphs for Predicting Social Events (SD, HR, YN), pp. 1007–1016.
KDDKDD-2019-deWetO
Finding Users Who Act Alike: Transfer Learning for Expanding Advertiser Audiences (Sd, JO), pp. 2251–2259.
KDDKDD-2019-DiSC
Relation Extraction via Domain-aware Transfer Learning (SD, YS, LC), pp. 1348–1357.
KDDKDD-2019-EsfandiariWAR #online #optimisation
Optimizing Peer Learning in Online Groups with Affinities (ME, DW, SAY, SBR), pp. 1216–1226.
KDDKDD-2019-FanZPLZYWWPH #multi
Multi-Horizon Time Series Forecasting with Temporal Attention Learning (CF, YZ, YP, XL, CZ0, RY, DW, WW, JP, HH), pp. 2527–2535.
KDDKDD-2019-FeiTL #multi #predict #word
Hierarchical Multi-Task Word Embedding Learning for Synonym Prediction (HF, ST, PL0), pp. 834–842.
KDDKDD-2019-GaoJ #graph #network #representation
Graph Representation Learning via Hard and Channel-Wise Attention Networks (HG, SJ), pp. 741–749.
KDDKDD-2019-HaldarARXYDZBTC
Applying Deep Learning to Airbnb Search (MH, MA, PR, TX, SY, HD, QZ, NBW, BCT, BMC, TL), pp. 1927–1935.
KDDKDD-2019-HaoCYSW #concept #knowledge base #ontology #representation
Universal Representation Learning of Knowledge Bases by Jointly Embedding Instances and Ontological Concepts (JH, MC, WY, YS, WW), pp. 1709–1719.
KDDKDD-2019-HeLLH #network
Learning Network-to-Network Model for Content-rich Network Embedding (ZH, JL0, NL, YH), pp. 1037–1045.
KDDKDD-2019-HeXZMZY #multi
Off-policy Learning for Multiple Loggers (LH, LX, WZ, ZMM, YZ, DY), pp. 1184–1193.
KDDKDD-2019-HossainR #process #recognition
Active Deep Learning for Activity Recognition with Context Aware Annotator Selection (HMSH, NR), pp. 1862–1870.
KDDKDD-2019-HouCLCY #framework #graph #representation
A Representation Learning Framework for Property Graphs (YH, HC, CL, JC, MCY), pp. 65–73.
KDDKDD-2019-Huang0DLLPST0Y0 #algorithm #network #theory and practice
Learning From Networks: Algorithms, Theory, and Applications (XH, PC0, YD, JL, HL0, JP, LS, JT0, FW0, HY, WZ0), pp. 3221–3222.
KDDKDD-2019-HuFS #network
Adversarial Learning on Heterogeneous Information Networks (BH, YF0, CS), pp. 120–129.
KDDKDD-2019-HughesCZ #generative
Generating Better Search Engine Text Advertisements with Deep Reinforcement Learning (JWH, KhC, RZ), pp. 2269–2277.
KDDKDD-2019-HuH #named #network #set
Sets2Sets: Learning from Sequential Sets with Neural Networks (HH, XH0), pp. 1491–1499.
KDDKDD-2019-HulsebosHBZSKDH #approach #data type #detection #named #semantics
Sherlock: A Deep Learning Approach to Semantic Data Type Detection (MH, KZH, MAB, EZ, AS, TK, ÇD, CAH), pp. 1500–1508.
KDDKDD-2019-InabaFKZ #approach #distance #energy #metric
A Free Energy Based Approach for Distance Metric Learning (SI, CTF, RVK, KZ), pp. 5–13.
KDDKDD-2019-JiaLZKK #how #question #robust #towards
Towards Robust and Discriminative Sequential Data Learning: When and How to Perform Adversarial Training? (XJ, SL0, HZ, SK, VK), pp. 1665–1673.
KDDKDD-2019-JiaSSB #graph
Graph-based Semi-Supervised & Active Learning for Edge Flows (JJ, MTS, SS, ARB), pp. 761–771.
KDDKDD-2019-KeXZBL #framework #named #online #predict
DeepGBM: A Deep Learning Framework Distilled by GBDT for Online Prediction Tasks (GK, ZX, JZ, JB0, TYL), pp. 384–394.
KDDKDD-2019-KillianWSCDT #using
Learning to Prescribe Interventions for Tuberculosis Patients Using Digital Adherence Data (JAK, BW, AS, VC, BD, MT), pp. 2430–2438.
KDDKDD-2019-Li0WGYK #adaptation #kernel #multi #predict
Sample Adaptive Multiple Kernel Learning for Failure Prediction of Railway Points (ZL, JZ0, QW0, YG, JY, CK), pp. 2848–2856.
KDDKDD-2019-LiuFWWBL #automation #multi
Automating Feature Subspace Exploration via Multi-Agent Reinforcement Learning (KL, YF, PW, LW, RB, XL), pp. 207–215.
KDDKDD-2019-LiuLDCG #named #recommendation
DAML: Dual Attention Mutual Learning between Ratings and Reviews for Item Recommendation (DL, JL0, BD, JC, RG), pp. 344–352.
KDDKDD-2019-LiuTLZCMW #adaptation
Exploiting Cognitive Structure for Adaptive Learning (QL0, ST, CL, HZ, EC, HM, SW), pp. 627–635.
KDDKDD-2019-LiZY #effectiveness #performance
Efficient and Effective Express via Contextual Cooperative Reinforcement Learning (YL, YZ, QY), pp. 510–519.
KDDKDD-2019-MingXQR #prototype #sequence
Interpretable and Steerable Sequence Learning via Prototypes (YM, PX, HQ, LR), pp. 903–913.
KDDKDD-2019-OhI #detection #using
Sequential Anomaly Detection using Inverse Reinforcement Learning (MhO, GI), pp. 1480–1490.
KDDKDD-2019-PanLW00Z #predict #using
Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning (ZP, YL, WW, YY0, YZ0, JZ), pp. 1720–1730.
KDDKDD-2019-PanMRSF #multi #online #predict
Predicting Different Types of Conversions with Multi-Task Learning in Online Advertising (JP, YM, ALR, YS, AF), pp. 2689–2697.
KDDKDD-2019-ParkLHHLC #quality
Learning Sleep Quality from Daily Logs (SP, CTL, SH, CH, SWL, MC), pp. 2421–2429.
KDDKDD-2019-Qin0Y
Deep Reinforcement Learning with Applications in Transportation (Z(Q, JT0, JY), pp. 3201–3202.
KDDKDD-2019-RawatLY #multi #using
Naranjo Question Answering using End-to-End Multi-task Learning Model (BPSR, FL, HY0), pp. 2547–2555.
KDDKDD-2019-SahooHKWLALH #image #named #recognition
FoodAI: Food Image Recognition via Deep Learning for Smart Food Logging (DS, WH, SK, XW, HL, PA, EPL, SCHH), pp. 2260–2268.
KDDKDD-2019-Salakhutdinov
Integrating Domain-Knowledge into Deep Learning (RS), p. 3176.
KDDKDD-2019-ShangYLQMY #re-engineering #recommendation
Environment Reconstruction with Hidden Confounders for Reinforcement Learning based Recommendation (WS, YY, QL, ZQ, YM, JY), pp. 566–576.
KDDKDD-2019-ShenVAAHN #monitoring #smarttech #using
Ambulatory Atrial Fibrillation Monitoring Using Wearable Photoplethysmography with Deep Learning (YS, MV, AA, AA, AYH, AYN), pp. 1909–1916.
KDDKDD-2019-SpathisRFMR #multi #self #sequence
Sequence Multi-task Learning to Forecast Mental Wellbeing from Sparse Self-reported Data (DS, SSR, KF, CM, JR), pp. 2886–2894.
KDDKDD-2019-SuzukiWN #scheduling
TV Advertisement Scheduling by Learning Expert Intentions (YS, WMW, IN), pp. 3071–3081.
KDDKDD-2019-TangXWZL #multi
Retaining Privileged Information for Multi-Task Learning (FT, CX, FW, JZ, LWHL), pp. 1369–1377.
KDDKDD-2019-TokuiOANOSSUVV #framework #named #research
Chainer: A Deep Learning Framework for Accelerating the Research Cycle (ST, RO, TA, YN, TO, SS, SS, KU, BV, HYV), pp. 2002–2011.
KDDKDD-2019-WangFXL #mobile #profiling #representation
Adversarial Substructured Representation Learning for Mobile User Profiling (PW, YF, HX, XL), pp. 130–138.
KDDKDD-2019-WangLCJ #effectiveness #game studies #performance #representation #retrieval
Effective and Efficient Sports Play Retrieval with Deep Representation Learning (ZW, CL, GC, CJ), pp. 499–509.
KDDKDD-2019-WangLZ #adaptation #ambiguity #graph
Adaptive Graph Guided Disambiguation for Partial Label Learning (DBW, LL0, MLZ), pp. 83–91.
KDDKDD-2019-WangQWLGZHZCZ #game studies
A Minimax Game for Instance based Selective Transfer Learning (BW, MQ, XW, YL, YG, XZ, JH0, BZ, DC, JZ), pp. 34–43.
KDDKDD-2019-WangXLLCDWS #framework #multi #named #network #social
MCNE: An End-to-End Framework for Learning Multiple Conditional Network Representations of Social Network (HW, TX, QL0, DL, EC, DD, HW, WS), pp. 1064–1072.
KDDKDD-2019-WangYCZ #convergence #performance
ADMM for Efficient Deep Learning with Global Convergence (JW, FY, XC0, LZ0), pp. 111–119.
KDDKDD-2019-WeiCZWGXL #coordination #named #network
PressLight: Learning Max Pressure Control to Coordinate Traffic Signals in Arterial Network (HW, CC, GZ, KW, VVG, KX, ZL), pp. 1290–1298.
KDDKDD-2019-XieH
Learning Class-Conditional GANs with Active Sampling (MKX, SJH), pp. 998–1006.
KDDKDD-2019-XuTZ #kernel #multi
Isolation Set-Kernel and Its Application to Multi-Instance Learning (BCX, KMT, ZHZ), pp. 941–949.
KDDKDD-2019-YangZZX0 #adaptation #capacity #incremental #modelling #scalability
Adaptive Deep Models for Incremental Learning: Considering Capacity Scalability and Sustainability (YY, DWZ, DCZ, HX, YJ0), pp. 74–82.
KDDKDD-2019-YaoCC #clustering #multi #robust
Robust Task Grouping with Representative Tasks for Clustered Multi-Task Learning (YY, JC0, HC), pp. 1408–1417.
KDDKDD-2019-YoshidaTK #graph #metric #mining
Learning Interpretable Metric between Graphs: Convex Formulation and Computation with Graph Mining (TY, IT, MK), pp. 1026–1036.
KDDKDD-2019-YuGNCPH #constraints #incremental
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning (SY, BG, KN, HC, JP, HH), pp. 1587–1595.
KDDKDD-2019-ZhaiWTPR #visual notation
Learning a Unified Embedding for Visual Search at Pinterest (AZ, HYW, ET, DHP, CR), pp. 2412–2420.
KDDKDD-2019-ZhangFWL0
Unifying Inter-region Autocorrelation and Intra-region Structures for Spatial Embedding via Collective Adversarial Learning (YZ, YF, PW, XL, YZ0), pp. 1700–1708.
KDDKDD-2019-ZhangYY #robust
Adversarial Variational Embedding for Robust Semi-supervised Learning (XZ0, LY, FY), pp. 139–147.
KDDKDD-2019-ZhangZJZ
Learning from Incomplete and Inaccurate Supervision (ZyZ, PZ, YJ0, ZHZ), pp. 1017–1025.
KDDKDD-2019-ZhaoDSZLX #multi #network #relational
Multiple Relational Attention Network for Multi-task Learning (JZ, BD, LS, FZ, WL, HX), pp. 1123–1131.
KDDKDD-2019-ZhaoZWGGQNCL #multi #personalisation
Personalized Attraction Enhanced Sponsored Search with Multi-task Learning (WZ0, BZ, BW, ZG, WG, GQ, WN, JC, HL), pp. 2632–2642.
KDDKDD-2019-ZhouGHZXJLX #collaboration #framework #refinement
A Collaborative Learning Framework to Tag Refinement for Points of Interest (JZ, SG, RH, DZ, JX, AJ, YL, HX), pp. 1752–1761.
KDDKDD-2019-ZhouM0H #education #optimisation
Optimizing the Wisdom of the Crowd: Inference, Learning, and Teaching (YZ, FM, JG0, JH), pp. 3231–3232.
KDDKDD-2019-ZouXDS0Y #recommendation
Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems (LZ, LX, ZD, JS, WL0, DY), pp. 2810–2818.
MoDELSMoDELS-2019-BencomoP #modelling #named #ram #runtime #using
RaM: Causally-Connected and Requirements-Aware Runtime Models using Bayesian Learning (NB, LHGP), pp. 216–226.
OnwardOnward-2019-BaniassadBHKA #design
Learning to listen for design (ELAB, IB, RH, GK, MA), pp. 179–186.
OnwardOnward-2019-CambroneroDV0WR #re-engineering
Active learning for software engineering (JPC, THYD, NV, JS0, JW, MCR), pp. 62–78.
OOPSLAOOPSLA-2019-BaderSP0 #automation #debugging #named
Getafix: learning to fix bugs automatically (JB, AS, MP, SC0), p. 27.
OOPSLAOOPSLA-2019-CambroneroR #named #source code
AL: autogenerating supervised learning programs (JPC, MCR), p. 28.
OOPSLAOOPSLA-2019-ChenWFBD #relational #using #verification
Relational verification using reinforcement learning (JC, JW, YF, OB, ID), p. 30.
OOPSLAOOPSLA-2019-LiWNN #debugging #detection #network #representation
Improving bug detection via context-based code representation learning and attention-based neural networks (YL, SW0, TNN, SVN), p. 30.
OOPSLAOOPSLA-2019-WuCHS0 #approach #fault #generative #precise #specification
Generating precise error specifications for C: a zero shot learning approach (BW, JPCI, YH, AS, SC0), p. 30.
PLATEAUPLATEAU-2019-ZhaoF0I #live programming #network #programming #visualisation
Live Programming Environment for Deep Learning with Instant and Editable Neural Network Visualization (CZ, TF, JK0, TI), p. 5.
PLDIPLDI-2019-0001R #database #modelling #using
Using active learning to synthesize models of applications that access databases (JS0, MCR), pp. 269–285.
PLDIPLDI-2019-AstorgaMSWX #generative
Learning stateful preconditions modulo a test generator (AA, PM, SS, SW, TX0), pp. 775–787.
PLDIPLDI-2019-EberhardtSRV #alias #api #specification
Unsupervised learning of API aliasing specifications (JE, SS, VR, MTV), pp. 745–759.
PLDIPLDI-2019-ZhuXMJ #framework #induction #synthesis
An inductive synthesis framework for verifiable reinforcement learning (HZ0, ZX, SM, SJ), pp. 686–701.
POPLPOPL-2019-AlonZLY #distributed #named
code2vec: learning distributed representations of code (UA0, MZ, OL, EY), p. 29.
SASSAS-2019-NeiderS0M #algorithm #invariant #named
Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants (DN, SS, PG0, PM), pp. 323–346.
ASEASE-2019-GuoCXMHLLZL #deployment #development #empirical #framework #platform #towards
An Empirical Study Towards Characterizing Deep Learning Development and Deployment Across Different Frameworks and Platforms (QG, SC, XX, LM0, QH, HL, YL0, JZ, XL), pp. 810–822.
ASEASE-2019-Hu0XY0Z #framework #mutation testing #testing
DeepMutation++: A Mutation Testing Framework for Deep Learning Systems (QH, LM0, XX, BY, YL0, JZ), pp. 1158–1161.
ASEASE-2019-NejadgholiY #approximate #case study #library #testing
A Study of Oracle Approximations in Testing Deep Learning Libraries (MN, JY0), pp. 785–796.
ASEASE-2019-SaifullahAR #api
Learning from Examples to Find Fully Qualified Names of API Elements in Code Snippets (CMKS, MA, CKR), pp. 243–254.
ASEASE-2019-WanSSXZ0Y #multi #network #retrieval #semantics #source code
Multi-modal Attention Network Learning for Semantic Source Code Retrieval (YW, JS, YS, GX, ZZ, JW0, PSY), pp. 13–25.
ASEASE-2019-ZhangC #adaptation #approach #modelling #named
Apricot: A Weight-Adaptation Approach to Fixing Deep Learning Models (HZ, WKC), pp. 376–387.
ASEASE-2019-ZhangYFSL0 #modelling #named #visualisation
NeuralVis: Visualizing and Interpreting Deep Learning Models (XZ, ZY, YF0, QS, JL, ZC0), pp. 1106–1109.
ASEASE-2019-ZhengFXS0HMLSC #automation #game studies #named #online #testing #using
Wuji: Automatic Online Combat Game Testing Using Evolutionary Deep Reinforcement Learning (YZ, CF, XX, TS, LM0, JH, ZM, YL0, RS, YC), pp. 772–784.
ESEC-FSEESEC-FSE-2019-BuiYJ #api #named
SAR: learning cross-language API mappings with little knowledge (NDQB, YY, LJ), pp. 796–806.
ESEC-FSEESEC-FSE-2019-CambroneroLKS0 #code search
When deep learning met code search (JC, HL, SK, KS, SC0), pp. 964–974.
ESEC-FSEESEC-FSE-2019-ChenCLML #analysis #approach #named #re-engineering #sentiment
SEntiMoji: an emoji-powered learning approach for sentiment analysis in software engineering (ZC, YC, XL, QM, XL), pp. 841–852.
ESEC-FSEESEC-FSE-2019-DuXLM0Z #analysis #modelling #named
DeepStellar: model-based quantitative analysis of stateful deep learning systems (XD, XX, YL0, LM0, YL0, JZ), pp. 477–487.
ESEC-FSEESEC-FSE-2019-IslamNPR #debugging
A comprehensive study on deep learning bug characteristics (MJI, GN, RP, HR), pp. 510–520.
ESEC-FSEESEC-FSE-2019-Kwiatkowska #robust #safety
Safety and robustness for deep learning with provable guarantees (keynote) (MK), p. 2.
ESEC-FSEESEC-FSE-2019-MesbahRJGA #compilation #fault #named
DeepDelta: learning to repair compilation errors (AM, AR, EJ, NG, EA), pp. 925–936.
ESEC-FSEESEC-FSE-2019-WuJYBSPX #grammar inference #named
REINAM: reinforcement learning for input-grammar inference (ZW, EJ, WY0, OB, DS, JP, TX0), pp. 488–498.
ESEC-FSEESEC-FSE-2019-Zhou0X0JLXH #fault #locality #predict
Latent error prediction and fault localization for microservice applications by learning from system trace logs (XZ, XP0, TX, JS0, CJ, DL, QX, CH), pp. 683–694.
ICSE-2019-FanLLWNZL #analysis #android #graph #using
Graph embedding based familial analysis of Android malware using unsupervised learning (MF, XL, JL0, MW, CN, QZ, TL0), pp. 771–782.
ICSE-2019-KimFY #testing #using
Guiding deep learning system testing using surprise adequacy (JK, RF, SY), pp. 1039–1049.
ICSE-2019-Liu0BKKKKT #consistency
Learning to spot and refactor inconsistent method names (KL0, DK0, TFB, TyK, KK, AK, SK, YLT), pp. 1–12.
ICSE-2019-PhamLQT #debugging #detection #library #locality #named #validation
CRADLE: cross-backend validation to detect and localize bugs in deep learning libraries (HVP, TL, WQ, LT0), pp. 1027–1038.
ICSE-2019-TufanoPWBP #on the
On learning meaningful code changes via neural machine translation (MT, JP, CW, GB, DP), pp. 25–36.
ICSE-2019-WeiLC #android #correlation #detection #named
Pivot: learning API-device correlations to facilitate Android compatibility issue detection (LW, YL, SCC), pp. 878–888.
ASPLOSASPLOS-2019-ChoOPJL #named
FA3C: FPGA-Accelerated Deep Reinforcement Learning (HC, PO, JP, WJ, JL), pp. 499–513.
ASPLOSASPLOS-2019-SivathanuCSZ #named #predict
Astra: Exploiting Predictability to Optimize Deep Learning (MS, TC, SSS, LZ), pp. 909–923.
CASECASE-2019-AyoobiCVV #using
Handling Unforeseen Failures Using Argumentation-Based Learning (HA, MC0, RV, BV), pp. 1699–1704.
CASECASE-2019-CronrathAL
Enhancing Digital Twins through Reinforcement Learning (CC, ARA, BL), pp. 293–298.
CASECASE-2019-FarooquiF #modelling #synthesis #using
Synthesis of Supervisors for Unknown Plant Models Using Active Learning (AF, MF), pp. 502–508.
CASECASE-2019-FoxBSG #automation #multi
Multi-Task Hierarchical Imitation Learning for Home Automation (RF, RB, IS, KG), pp. 1–8.
CASECASE-2019-GamsRNSKSU #quality #visual notation
Robotic Learning for Increased Productivity: Autonomously Improving Speed of Robotic Visual Quality Inspection (AG, SR, BN, JS, RK, JS, AU), pp. 1275–1281.
CASECASE-2019-GaoZ0 #behaviour #modelling #navigation
Modeling Socially Normative Navigation Behaviors from Demonstrations with Inverse Reinforcement Learning (XG, XZ, MT0), pp. 1333–1340.
CASECASE-2019-HongCL #locality #mobile #realtime #using
Real-time Visual-Based Localization for Mobile Robot Using Structured-View Deep Learning (YFH, YMC, CHGL), pp. 1353–1358.
CASECASE-2019-Huang0C #policy
Machine Preventive Replacement Policy for Serial Production Lines Based on Reinforcement Learning (JH0, QC0, NC), pp. 523–528.
CASECASE-2019-KanekolTPODKM #image #modelling #process
Learning Deep Dynamical Models of a Waste Incineration Plant from In-furnace Images and Process Data (TK, YT, JP, YO, YD, KK, TM), pp. 873–878.
CASECASE-2019-KazmiNVRC #detection #recognition #using
Vehicle tire (tyre) detection and text recognition using deep learning (WK, IN, GV, PR, AC), pp. 1074–1079.
CASECASE-2019-LaiL #detection #using
Video-Based Windshield Rain Detection and Wiper Control Using Holistic-View Deep Learning (CCL, CHGL), pp. 1060–1065.
CASECASE-2019-LiuHS #approach #exponential #scheduling
A new solution approach for flow shop scheduling with an exponential time-dependent learning effect (LL, HH, LS), pp. 468–473.
CASECASE-2019-LiuZHZWW #estimation #network #using
sEMG-Based Continuous Estimation of Knee Joint Angle Using Deep Learning with Convolutional Neural Network (GL, LZ, BH, TZ, ZW, PW), pp. 140–145.
CASECASE-2019-PotluriD #detection #injection #performance #process
Deep Learning based Efficient Anomaly Detection for Securing Process Control Systems against Injection Attacks (SP, CD), pp. 854–860.
CASECASE-2019-QianAX0 #performance
Improved Production Performance Through Manufacturing System Learning (YQ, JA, GX, QC0), pp. 517–522.
CASECASE-2019-RazaL #approach #multi #policy
Constructive Policy: Reinforcement Learning Approach for Connected Multi-Agent Systems (SJAR, ML), pp. 257–262.
CASECASE-2019-ShkorutaCMR
Iterative learning control for power profile shaping in selective laser melting (AS, WC, SM, SR), pp. 655–660.
CASECASE-2019-SoniGAS #hybrid #named
HMC: A Hybrid Reinforcement Learning Based Model Compression for Healthcare Applications (RS, JG, GA, VRS), pp. 146–151.
CASECASE-2019-WangY0 #approach #monitoring
A Deep Learning Approach for Heating and Cooling Equipment Monitoring (YW, CY, WS0), pp. 228–234.
CASECASE-2019-WuZQX #precise
Deep Reinforcement Learning of Robotic Precision Insertion Skill Accelerated by Demonstrations (XW, DZ, FQ, DX), pp. 1651–1656.
CASECASE-2019-XuLWZCQ #approach #performance
An Improved GA-KRR Nested Learning Approach for Refrigeration Compressor Performance Forecasting* (CX, XL, JW, JZ, JC, WQ), pp. 622–627.
CASECASE-2019-XuMZLKZ #adaptation #word
An Adaptive Wordpiece Language Model for Learning Chinese Word Embeddings (BX, LM, LZ, HL, QK, MZ), pp. 812–817.
CASECASE-2019-YangLYK #classification #realtime
Investigation of Deep Learning for Real-Time Melt Pool Classification in Additive Manufacturing (ZY, YL, HY, SK), pp. 640–647.
CASECASE-2019-ZhangCZXL #detection #fault
Weld Defect Detection Based on Deep Learning Method (HZ, ZC, CZ, JX, XL), pp. 1574–1579.
CASECASE-2019-ZhangLGWL #algorithm #classification #taxonomy
A Shapelet Dictionary Learning Algorithm for Time Series Classification (JZ, XL, LG0, LW, GL), pp. 299–304.
CASECASE-2019-ZhangLWGG #fault #network #using
Fault Diagnosis Using Unsupervised Transfer Learning Based on Adversarial Network (ZZ, XL, LW, LG0, YG), pp. 305–310.
CASECASE-2019-ZhouWXS00G #approach #modelling #personalisation #predict
A Model-Driven Learning Approach for Predicting the Personalized Dynamic Thermal Comfort in Ordinary Office Environment (YZ, XW, ZX, YS, TL0, CS0, XG), pp. 739–744.
CADECADE-2019-ChenWAZKZ #named
NIL: Learning Nonlinear Interpolants (MC, JW0, JA, BZ, DK, NZ), pp. 178–196.
CADECADE-2019-FioriW #modelling
SCL Clause Learning from Simple Models (AF, CW), pp. 233–249.
ICSTICST-2019-KooS0B #automation #generative #named #testing #worst-case
PySE: Automatic Worst-Case Test Generation by Reinforcement Learning (JK, CS, MK0, SB), pp. 136–147.
ICSTICST-2019-WangWZK #alloy
Learning to Optimize the Alloy Analyzer (WW, KW, MZ, SK), pp. 228–239.
ICSTICST-2019-ZhaoLWSH #framework #fuzzing #industrial #named #perspective #protocol
SeqFuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning Perspective (HZ, ZL, HW, JS, YH), pp. 59–67.
ICTSSICTSS-2019-ArcainiGR #regular expression #testing
Regular Expression Learning with Evolutionary Testing and Repair (PA, AG, ER), pp. 22–40.
TAPTAP-2019-AichernigPSW #case study #predict #testing
Predicting and Testing Latencies with Deep Learning: An IoT Case Study (BKA, FP, RS, AW), pp. 93–111.
TAPTAP-2019-PetrenkoA #communication #state machine
Learning Communicating State Machines (AP, FA), pp. 112–128.
JCDLJCDL-2018-ColeASSCJ #design #framework #platform #research
Designing a Research Platform for Engaged Learning (NC, AAR, RS, CES, SC, RJ), pp. 315–316.
JCDLJCDL-2018-MaiGS #performance #semantics #using
Using Deep Learning for Title-Based Semantic Subject Indexing to Reach Competitive Performance to Full-Text (FM, LG, AS), pp. 169–178.
EDMEDM-2018-AguerrebereCW #deployment #online #process #student
Estimating the Treatment Effect of New Device Deployment on Uruguayan Students' Online Learning Activity (CA, CC, JW).
EDMEDM-2018-AkramMWMBL #assessment #game studies
Improving Stealth Assessment in Game-based Learning with LSTM-based Analytics (BA, WM, ENW, BWM, KB, JCL).
EDMEDM-2018-CarvalhoGMK #online #process
Analyzing the relative learning benefits of completing required activities and optional readings in online courses (PFC, MG, BM, KK).
EDMEDM-2018-ChenLCBC #analysis #behaviour #scalability
Behavioral Analysis at Scale: Learning Course Prerequisite Structures from Learner Clickstreams (WC, ASL, DC, CGB, MC).
EDMEDM-2018-ChopraG #mining
Job Description Mining to Understand Work-Integrated Learning (SC, LG).
EDMEDM-2018-DuDP #analysis #behaviour #named
ELBA: Exceptional Learning Behavior Analysis (XD, WD, MP).
EDMEDM-2018-FangSLCSFGCCPFG #clustering
Clustering the Learning Patterns of Adults with Low Literacy Skills Interacting with an Intelligent Tutoring System (YF, KTS, AL, QC, GS, SF, JG, SC, ZC, PIP, JF, DG, ACG).
EDMEDM-2018-KarumbaiahBS #game studies #predict #student
Predicting Quitting in Students Playing a Learning Game (SK, RSB, VJS).
EDMEDM-2018-KimVG #named #performance #predict #student
GritNet: Student Performance Prediction with Deep Learning (BHK, EV, VG).
EDMEDM-2018-MatayoshiGDUC #adaptation #assessment #testing
Forgetting curves and testing effect in an adaptive learning and assessment system (JM, UG, CD, HU, EC).
EDMEDM-2018-RajendranKCLB #behaviour #predict
Predicting Learning by Analyzing Eye-Gaze Data of Reading Behavior (RR, AK, KEC, DTL, GB).
EDMEDM-2018-ReillyRS #collaboration #multi #using
Exploring Collaboration Using Motion Sensors and Multi-Modal Learning Analytics (JMR, MR, BS).
EDMEDM-2018-SawyerRAL #analysis #behaviour #game studies #problem #student
Filtered Time Series Analyses of Student Problem-Solving Behaviors in Game-based Learning (RS, JPR, RA, JCL).
EDMEDM-2018-SinghSCD #behaviour #modelling #multi #student
Modeling Hint-Taking Behavior and Knowledge State of Students with Multi-Task Learning (HS, SKS, RC, PD).
EDMEDM-2018-TranLCGSBM #design #documentation #generative
Document Chunking and Learning Objective Generation for Instruction Design (KNT, JHL, DC, UG, BS, CJB, MKM).
EDMEDM-2018-WinchellMLGP #predict #student
Textbook annotations as an early predictor of student learning (AW, MM, ASL, PG, HP).
ICPCICPC-2018-LiNJWHW #behaviour #evolution #named
Logtracker: learning log revision behaviors proactively from software evolution history (SL, XN, ZJ, JW, HH, TW0), pp. 178–188.
ICPCICPC-2018-OttAHBAFL #network #programming language #using
Learning lexical features of programming languages from imagery using convolutional neural networks (JO, AA, PH, NB, HA, CF, EL), pp. 336–339.
MSRMSR-2018-MajumderBBFM08 #case study #mining #performance #stack overflow
500+ times faster than deep learning: a case study exploring faster methods for text mining stackoverflow (SM, NB, KB, WF0, TM), pp. 554–563.
MSRMSR-2018-OttAHBL08 #approach #identification #image #source code #video
A deep learning approach to identifying source code in images and video (JO, AA, PH, AB, EL), pp. 376–386.
MSRMSR-2018-TufanoWBPWP08 #source code
Deep learning similarities from different representations of source code (MT, CW, GB, MDP, MW, DP), pp. 542–553.
MSRMSR-2018-YinDCVN08 #natural language #stack overflow
Learning to mine aligned code and natural language pairs from stack overflow (PY, BD, EC, BV, GN), pp. 476–486.
SANERSANER-2018-FakhouryANKA #detection #question #smell
Keep it simple: Is deep learning good for linguistic smell detection? (SF, VA, CN, FK, GA), pp. 602–611.
SANERSANER-2018-XuLLZ #analysis #component #fault #hybrid #kernel #predict
Cross-version defect prediction via hybrid active learning with kernel principal component analysis (ZX, JL0, XL, TZ0), pp. 209–220.
FMFM-2018-AkazakiLYDH #cyber-physical #using
Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning (TA, SL, YY, YD, JH), pp. 456–465.
SEFMSEFM-2018-BabaeeGF #framework #predict #runtime #statistics #using #verification
Prevent : A Predictive Run-Time Verification Framework Using Statistical Learning (RB, AG, SF), pp. 205–220.
ICFP-2018-StampoulisC #functional #higher-order #logic programming #prolog #prototype #using
Prototyping a functional language using higher-order logic programming: a functional pearl on learning the ways of λProlog/Makam (AS, AC), p. 30.
AIIDEAIIDE-2018-LeeTZXDA #architecture #composition
Modular Architecture for StarCraft II with Deep Reinforcement Learning (DL, HT, JOZ, HX, TD, PA), pp. 187–193.
AIIDEAIIDE-2018-PackardO #case study #user study
A User Study on Learning from Human Demonstration (BP, SO), pp. 208–214.
CoGCIG-2018-AndersenGG #game studies #realtime
Deep RTS: A Game Environment for Deep Reinforcement Learning in Real-Time Strategy Games (PAA, MG, OCG), pp. 1–8.
CoGCIG-2018-AungBDCKYW #dataset #predict #scalability
Predicting Skill Learning in a Large, Longitudinal MOBA Dataset (MA, VB, AD, PIC, AVK, CY, ARW), pp. 1–7.
CoGCIG-2018-BulitkoD #heuristic #realtime
Anxious Learning in Real-Time Heuristic Search (VB, KD), pp. 1–4.
CoGCIG-2018-DockhornA #approximate #game studies #video
Forward Model Approximation for General Video Game Learning (AD, DA), pp. 1–8.
CoGCIG-2018-GlavinM #experience #using
Skilled Experience Catalogue: A Skill-Balancing Mechanism for Non-Player Characters using Reinforcement Learning (FGG, MGM), pp. 1–8.
CoGCIG-2018-GudmundssonEPNP
Human-Like Playtesting with Deep Learning (SFG, PE, EP, AN, SP, BK, RM, LC), pp. 1–8.
CoGCIG-2018-HarmerGVHBOSN #3d #concurrent #game studies
Imitation Learning with Concurrent Actions in 3D Games (JH, LG, JdV, HH, JB, TO, KS, MN), pp. 1–8.
CoGCIG-2018-JustesenR #automation #education
Automated Curriculum Learning by Rewarding Temporally Rare Events (NJ, SR), pp. 1–8.
CoGCIG-2018-KaczmarekP #interactive #motivation
Promotion of Learning Motivation through Individualization of Learner-Game Interaction (SK, SP), pp. 1–8.
CoGCIG-2018-KowalskiK #regular expression
Regular Language Inference for Learning Rules of Simplified Boardgames (JK, AK), pp. 1–8.
CoGCIG-2018-ShaoZLZ
Learning Battles in ViZDoom via Deep Reinforcement Learning (KS, DZ, NL, YZ), pp. 1–4.
CoGCIG-2018-SpyrouVPAL #personalisation
Exploiting IoT Technologies for Personalized Learning (ES, NV, AP, SA, HCL), pp. 1–8.
CoGCIG-2018-SwiechowskiTJ #algorithm
Improving Hearthstone AI by Combining MCTS and Supervised Learning Algorithms (MS, TT, AJ), pp. 1–8.
CoGCIG-2018-TavaresC #game studies #realtime
Tabular Reinforcement Learning in Real-Time Strategy Games via Options (ART, LC), pp. 1–8.
CoGCIG-2018-TorradoBT0P #game studies #video
Deep Reinforcement Learning for General Video Game AI (RRT, PB, JT, JL0, DPL), pp. 1–8.
CoGCIG-2018-WoofC #game studies #network
Learning to Play General Video-Games via an Object Embedding Network (WW, KC), pp. 1–8.
CoGCIG-2018-YangO #evaluation #game studies #independence #realtime
Learning Map-Independent Evaluation Functions for Real-Time Strategy Games (ZY, SO), pp. 1–7.
DiGRADiGRA-2018-RichardMA #collaboration #contest
Collegiate eSports as Learning Ecologies: Investigating Collaborative Learning and Cognition During Competitions (GTR, ZAM, RWA).
DiGRADiGRA-2018-Wu #education #game studies #video
Video Games, Learning, and the Shifting Educational Landscape (HAW).
FDGFDG-2018-Maureira #game studies #named #tool support
CURIO: a game-based learning toolkit for fostering curiosity (MAGM), p. 6.
CoGVS-Games-2018-KutunS #game studies
Rallye Game: Learning by Playing with Racing Cars (BK, WS), pp. 1–2.
CoGVS-Games-2018-Perez-ColadoRFM #game studies #multi
Multi-Level Game Learning Analytics for Serious Games (IJPC, DCR, MFM, IMO, BFM), pp. 1–4.
CoGVS-Games-2018-RallisLGVDD #analysis #artificial reality #game studies #using #visualisation
An Embodied Learning Game Using Kinect and Labanotation for Analysis and Visualization of Dance Kinesiology (IR, AL, IG, AV, ND, AD), pp. 1–8.
CIKMCIKM-2018-0013H #consistency #interactive #modelling #multi
Interactions Modeling in Multi-Task Multi-View Learning with Consistent Task Diversity (XL0, JH), pp. 853–861.
CIKMCIKM-2018-AiMLC #rank #theory and practice
Unbiased Learning to Rank: Theory and Practice (QA, JM, YL, WBC), pp. 2305–2306.
CIKMCIKM-2018-BiessmannSSSL
“Deep” Learning for Missing Value Imputationin Tables with Non-Numerical Data (FB, DS, SS, PS, DL), pp. 2017–2025.
CIKMCIKM-2018-DaveZHAK #approach #recommendation #representation
A Combined Representation Learning Approach for Better Job and Skill Recommendation (VSD, BZ, MAH, KA, MK), pp. 1997–2005.
CIKMCIKM-2018-DingTZ #generative #graph
Semi-supervised Learning on Graphs with Generative Adversarial Nets (MD, JT, JZ), pp. 913–922.
CIKMCIKM-2018-FerroLM0 #continuation #education #rank
Continuation Methods and Curriculum Learning for Learning to Rank (NF0, CL, MM, RP0), pp. 1523–1526.
CIKMCIKM-2018-HashemiWKZC18a #identification
Impact of Domain and User's Learning Phase on Task and Session Identification in Smart Speaker Intelligent Assistants (SHH, KW, AEK, IZ, PAC), pp. 1193–1202.
CIKMCIKM-2018-JinSLGWZ #multi #realtime
Real-Time Bidding with Multi-Agent Reinforcement Learning in Display Advertising (JJ, CS, HL, KG, JW0, WZ0), pp. 2193–2201.
CIKMCIKM-2018-KimLCCK #comprehension #scheduling
Learning User Preferences and Understanding Calendar Contexts for Event Scheduling (DK, JL, DC, JC, JK), pp. 337–346.
CIKMCIKM-2018-KrishnanSS #behaviour #online
Insights from the Long-Tail: Learning Latent Representations of Online User Behavior in the Presence of Skew and Sparsity (AK, AS, HS), pp. 297–306.
CIKMCIKM-2018-LiuZHL #representation #visual notation
Adversarial Learning of Answer-Related Representation for Visual Question Answering (YL, XZ0, FH, ZL), pp. 1013–1022.
CIKMCIKM-2018-LoyolaGS #debugging #locality #rank
Bug Localization by Learning to Rank and Represent Bug Inducing Changes (PL, KG, FS), pp. 657–665.
CIKMCIKM-2018-LuoWHYZ #segmentation #semantics
Coarse-to-Fine Annotation Enrichment for Semantic Segmentation Learning (YL, ZW, ZH, YY0, CZ), pp. 237–246.
CIKMCIKM-2018-MedinaVY #online #testing
Online Learning for Non-Stationary A/B Tests (AMM, SV, DY), pp. 317–326.
CIKMCIKM-2018-MelidisSN
Learning under Feature Drifts in Textual Streams (DPM, MS, EN), pp. 527–536.
CIKMCIKM-2018-MoraesPH #process
Contrasting Search as a Learning Activity with Instructor-designed Learning (FM, SRP, CH), pp. 167–176.
CIKMCIKM-2018-NishidaSOAT #comprehension #information retrieval #multi #named
Retrieve-and-Read: Multi-task Learning of Information Retrieval and Reading Comprehension (KN, IS, AO, HA, JT), pp. 647–656.
CIKMCIKM-2018-OhSL #graph #multi
Knowledge Graph Completion by Context-Aware Convolutional Learning with Multi-Hop Neighborhoods (BO, SS, KHL), pp. 257–266.
CIKMCIKM-2018-OosterhuisR #online #rank
Differentiable Unbiased Online Learning to Rank (HO, MdR), pp. 1293–1302.
CIKMCIKM-2018-PandeyKS #recommendation #using
Recommending Serendipitous Items using Transfer Learning (GP0, DK, AS), pp. 1771–1774.
CIKMCIKM-2018-PauleMMO #fine-grained #twitter
Learning to Geolocalise Tweets at a Fine-Grained Level (JDGP, YM, CM, IO), pp. 1675–1678.
CIKMCIKM-2018-RamanathIPHGOWK #representation #towards
Towards Deep and Representation Learning for Talent Search at LinkedIn (RR, HI, GP, BH, QG, CO, XW, KK, SCG), pp. 2253–2261.
CIKMCIKM-2018-RenFZLLZYW #multi #online
Learning Multi-touch Conversion Attribution with Dual-attention Mechanisms for Online Advertising (KR, YF, WZ0, SL, JL, YZ, YY0, JW0), pp. 1433–1442.
CIKMCIKM-2018-ShenKBQM #clustering #email #multi #query #ranking
Multi-Task Learning for Email Search Ranking with Auxiliary Query Clustering (JS, MK, MB, ZQ, DM), pp. 2127–2135.
CIKMCIKM-2018-SongZWTZJC #graph #named #rank
TGNet: Learning to Rank Nodes in Temporal Graphs (QS, BZ, YW, LAT, HZ, GJ, HC), pp. 97–106.
CIKMCIKM-2018-SuLK #distributed #hybrid #metric
Communication-Efficient Distributed Deep Metric Learning with Hybrid Synchronization (YS, MRL, IK), pp. 1463–1472.
CIKMCIKM-2018-WuCYWTZXG
Budget Constrained Bidding by Model-free Reinforcement Learning in Display Advertising (DW, XC, XY, HW, QT, XZ, JX, KG), pp. 1443–1451.
CIKMCIKM-2018-WuLZ #retrieval #semantics #taxonomy
Joint Dictionary Learning and Semantic Constrained Latent Subspace Projection for Cross-Modal Retrieval (JW, ZL, HZ), pp. 1663–1666.
CIKMCIKM-2018-WuWL #classification #multi #sentiment
Imbalanced Sentiment Classification with Multi-Task Learning (FW, CW, JL), pp. 1631–1634.
CIKMCIKM-2018-WuWL18a #collaboration #detection #microblog #social
Semi-Supervised Collaborative Learning for Social Spammer and Spam Message Detection in Microblogging (FW, CW, JL), pp. 1791–1794.
CIKMCIKM-2018-WuZA #classification #graph
A Quest for Structure: Jointly Learning the Graph Structure and Semi-Supervised Classification (XW, LZ, LA), pp. 87–96.
CIKMCIKM-2018-XiaJSZWS #modelling #multi #recommendation
Modeling Consumer Buying Decision for Recommendation Based on Multi-Task Deep Learning (QX, PJ, FS, YZ, XW, ZS), pp. 1703–1706.
CIKMCIKM-2018-YangS #multi #named #performance
FALCON: A Fast Drop-In Replacement of Citation KNN for Multiple Instance Learning (SY, XS), pp. 67–76.
CIKMCIKM-2018-ZamaniDCLK #ranking #representation
From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing (HZ, MD0, WBC, EGLM, JK), pp. 497–506.
CIKMCIKM-2018-ZhaoX0ZLZ #approach #comprehension #on the #predict
On Prediction of User Destination by Sub-Trajectory Understanding: A Deep Learning based Approach (JZ, JX, RZ0, PZ, CL, FZ), pp. 1413–1422.
CIKMCIKM-2018-ZhuLYZ0W #framework #predict
A Supervised Learning Framework for Prediction of Incompatible Herb Pair in Traditional Chinese Medicine (JZ, YL, SY, SZ, ZY0, CW), pp. 1799–1802.
ECIRECIR-2018-00010VPRP #multi #twitter
Multi-task Learning for Extraction of Adverse Drug Reaction Mentions from Tweets (SG0, MG0, VV, SP, NR, GKP), pp. 59–71.
ECIRECIR-2018-AgrawalA #detection #multi #platform #social #social media
Deep Learning for Detecting Cyberbullying Across Multiple Social Media Platforms (SA, AA), pp. 141–153.
ECIRECIR-2018-HerreraPP #microblog #retrieval
Learning to Leverage Microblog Information for QA Retrieval (JMH, BP, DP), pp. 507–520.
ECIRECIR-2018-Jalan0V #classification #using
Medical Forum Question Classification Using Deep Learning (RSJ, MG0, VV), pp. 45–58.
ECIRECIR-2018-McDonaldMO #overview #perspective
Active Learning Strategies for Technology Assisted Sensitivity Review (GM, CM, IO), pp. 439–453.
ECIRECIR-2018-NiculaRR #multi
Improving Deep Learning for Multiple Choice Question Answering with Candidate Contexts (BN, SR, TR), pp. 678–683.
ECIRECIR-2018-TianLWWQLLS #semantics #similarity
An Adversarial Joint Learning Model for Low-Resource Language Semantic Textual Similarity (JT, ML, YW, JW, LQ, SL0, JL, LS), pp. 89–101.
ECIRECIR-2018-WilkensZF #documentation #ranking
Document Ranking Applied to Second Language Learning (RW, LZ, CF), pp. 618–624.
ICMLICML-2018-0001JADYD
Hierarchical Imitation and Reinforcement Learning (HML0, NJ, AA, MD, YY, HDI), pp. 2923–2932.
ICMLICML-2018-AbelALL #abstraction
State Abstractions for Lifelong Reinforcement Learning (DA, DA, LL, MLL), pp. 10–19.
ICMLICML-2018-AbelJGKL #policy
Policy and Value Transfer in Lifelong Reinforcement Learning (DA, YJ, SYG, GDK, MLL), pp. 20–29.
ICMLICML-2018-AchlioptasDMG #3d #generative #modelling
Learning Representations and Generative Models for 3D Point Clouds (PA, OD, IM, LJG), pp. 40–49.
ICMLICML-2018-AlaaS18a #automation #kernel #modelling #named #optimisation
AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning (AMA, MvdS), pp. 139–148.
ICMLICML-2018-AlmahairiRSBC
Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data (AA, SR, AS, PB, ACC), pp. 195–204.
ICMLICML-2018-AsadiML #modelling
Lipschitz Continuity in Model-based Reinforcement Learning (KA, DM, MLL), pp. 264–273.
ICMLICML-2018-BalcanDSV #branch
Learning to Branch (MFB, TD, TS, EV), pp. 353–362.
ICMLICML-2018-BalestrieroCGB
Spline Filters For End-to-End Deep Learning (RB, RC, HG, RGB), pp. 373–382.
ICMLICML-2018-BargiacchiVRNH #coordination #graph #multi #problem
Learning to Coordinate with Coordination Graphs in Repeated Single-Stage Multi-Agent Decision Problems (EB, TV, DMR, AN, HvH), pp. 491–499.
ICMLICML-2018-BarretoBQSSHMZM #policy #using
Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement (AB, DB, JQ, TS, DS, MH, DJM, AZ, RM), pp. 510–519.
ICMLICML-2018-BelkinMM #kernel
To Understand Deep Learning We Need to Understand Kernel Learning (MB, SM, SM), pp. 540–548.
ICMLICML-2018-CalandrielloKLV #graph #scalability
Improved Large-Scale Graph Learning through Ridge Spectral Sparsification (DC, IK, AL, MV), pp. 687–696.
ICMLICML-2018-CaoGWSHT #coordination
Adversarial Learning with Local Coordinate Coding (JC, YG, QW, CS, JH, MT), pp. 706–714.
ICMLICML-2018-CharlesP #algorithm
Stability and Generalization of Learning Algorithms that Converge to Global Optima (ZBC, DSP), pp. 744–753.
ICMLICML-2018-Chatterjee
Learning and Memorization (SC), pp. 754–762.
ICMLICML-2018-ChengDH #rank
Extreme Learning to Rank via Low Rank Assumption (MC, ID, CJH), pp. 950–959.
ICMLICML-2018-ChenLW #scalability #using
Scalable Bilinear Learning Using State and Action Features (YC, LL0, MW), pp. 833–842.
ICMLICML-2018-ChenMS
Learning K-way D-dimensional Discrete Codes for Compact Embedding Representations (TC0, MRM, YS), pp. 853–862.
ICMLICML-2018-ChenSWJ
Learning to Explain: An Information-Theoretic Perspective on Model Interpretation (JC, LS, MJW, MIJ), pp. 882–891.
ICMLICML-2018-ChenXG #multi
End-to-End Learning for the Deep Multivariate Probit Model (DC, YX, CPG), pp. 931–940.
ICMLICML-2018-Chierichetti0T #multi
Learning a Mixture of Two Multinomial Logits (FC, RK0, AT), pp. 960–968.
ICMLICML-2018-ChowNG #consistency
Path Consistency Learning in Tsallis Entropy Regularized MDPs (YC, ON, MG), pp. 978–987.
ICMLICML-2018-Co-ReyesLGEAL #self
Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings (JDCR, YL, AG0, BE, PA, SL), pp. 1008–1017.
ICMLICML-2018-ColasSO #algorithm #named
GEP-PG: Decoupling Exploration and Exploitation in Deep Reinforcement Learning Algorithms (CC, OS, PYO), pp. 1038–1047.
ICMLICML-2018-CorneilGB #performance
Efficient ModelBased Deep Reinforcement Learning with Variational State Tabulation (DSC, WG, JB), pp. 1057–1066.
ICMLICML-2018-CortesDGMY #online
Online Learning with Abstention (CC, GD, CG, MM, SY), pp. 1067–1075.
ICMLICML-2018-CzarneckiJJHTHO #education
Mix & Match Agent Curricula for Reinforcement Learning (WMC, SMJ, MJ, LH, YWT, NH, SO, RP), pp. 1095–1103.
ICMLICML-2018-DabneyOSM #network
Implicit Quantile Networks for Distributional Reinforcement Learning (WD, GO, DS, RM), pp. 1104–1113.
ICMLICML-2018-DaiKDSS #algorithm #graph
Learning Steady-States of Iterative Algorithms over Graphs (HD, ZK, BD, AJS, LS), pp. 1114–1122.
ICMLICML-2018-DaiS0XHLCS #approximate #convergence #named
SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation (BD, AS, LL0, LX, NH, ZL0, JC, LS), pp. 1133–1142.
ICMLICML-2018-DepewegHDU #composition #nondeterminism #performance
Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning (SD, JMHL, FDV, SU), pp. 1192–1201.
ICMLICML-2018-DibangoyeB #distributed
Learning to Act in Decentralized Partially Observable MDPs (JSD, OB), pp. 1241–1250.
ICMLICML-2018-DietterichTC
Discovering and Removing Exogenous State Variables and Rewards for Reinforcement Learning (TGD, GT, ZC), pp. 1261–1269.
ICMLICML-2018-DimakopoulouR #concurrent #coordination
Coordinated Exploration in Concurrent Reinforcement Learning (MD, BVR), pp. 1270–1278.
ICMLICML-2018-EfroniDSM #approach
Beyond the One-Step Greedy Approach in Reinforcement Learning (YE, GD, BS, SM), pp. 1386–1395.
ICMLICML-2018-FalahatgarJOPR #ranking
The Limits of Maxing, Ranking, and Preference Learning (MF, AJ, AO, VP, VR), pp. 1426–1435.
ICMLICML-2018-FengWCS #multi #network #parametricity #using
Nonparametric variable importance using an augmented neural network with multi-task learning (JF, BDW, MC, NS), pp. 1495–1504.
ICMLICML-2018-FlorensaHGA #automation #generative
Automatic Goal Generation for Reinforcement Learning Agents (CF, DH, XG, PA), pp. 1514–1523.
ICMLICML-2018-FruitPLO #performance
Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning (RF, MP, AL, RO), pp. 1573–1581.
ICMLICML-2018-GaneaBH
Hyperbolic Entailment Cones for Learning Hierarchical Embeddings (OEG, GB, TH), pp. 1632–1641.
ICMLICML-2018-GaninKBEV #image #source code #using
Synthesizing Programs for Images using Reinforced Adversarial Learning (YG, TK, IB, SMAE, OV), pp. 1652–1661.
ICMLICML-2018-GaoW #network #parallel
Parallel Bayesian Network Structure Learning (TG, DW), pp. 1671–1680.
ICMLICML-2018-GarciaCEd #predict
Structured Output Learning with Abstention: Application to Accurate Opinion Prediction (AG0, CC, SE, FdB), pp. 1681–1689.
ICMLICML-2018-Georgogiannis #fault #taxonomy
The Generalization Error of Dictionary Learning with Moreau Envelopes (AG), pp. 1710–1718.
ICMLICML-2018-GhassamiSKB #design #empirical
Budgeted Experiment Design for Causal Structure Learning (AG, SS, NK, EB), pp. 1719–1728.
ICMLICML-2018-GhoshalH #modelling #polynomial #predict
Learning Maximum-A-Posteriori Perturbation Models for Structured Prediction in Polynomial Time (AG, JH), pp. 1749–1757.
ICMLICML-2018-GhoshYD #network
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors (SG, JY, FDV), pp. 1739–1748.
ICMLICML-2018-GilraG #network
Non-Linear Motor Control by Local Learning in Spiking Neural Networks (AG, WG), pp. 1768–1777.
ICMLICML-2018-GoelKM
Learning One Convolutional Layer with Overlapping Patches (SG, ARK, RM), pp. 1778–1786.
ICMLICML-2018-GroverAGBE #multi #policy
Learning Policy Representations in Multiagent Systems (AG, MAS, JKG, YB, HE), pp. 1797–1806.
ICMLICML-2018-GuezWASVWMS
Learning to Search with MCTSnets (AG, TW, IA, KS, OV, DW, RM, DS), pp. 1817–1826.
ICMLICML-2018-HaarnojaHAL #policy
Latent Space Policies for Hierarchical Reinforcement Learning (TH, KH, PA, SL), pp. 1846–1855.
ICMLICML-2018-HaarnojaZAL #probability
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor (TH, AZ, PA, SL), pp. 1856–1865.
ICMLICML-2018-HammN #optimisation #performance
K-Beam Minimax: Efficient Optimization for Deep Adversarial Learning (JH, YKN), pp. 1876–1884.
ICMLICML-2018-HashemiSSALCKR #data access #memory management
Learning Memory Access Patterns (MH, KS, JAS, GA, HL, JC, CK, PR), pp. 1924–1933.
ICMLICML-2018-HeinonenYMIL #modelling #process
Learning unknown ODE models with Gaussian processes (MH, CY, HM, JI, HL), pp. 1964–1973.
ICMLICML-2018-Huang0S #markov #modelling #topic
Learning Hidden Markov Models from Pairwise Co-occurrences with Application to Topic Modeling (KH, XF0, NDS), pp. 2073–2082.
ICMLICML-2018-HuangA0S #using
Learning Deep ResNet Blocks Sequentially using Boosting Theory (FH, JTA, JL0, RES), pp. 2063–2072.
ICMLICML-2018-HuNSS #classification #question #robust
Does Distributionally Robust Supervised Learning Give Robust Classifiers? (WH, GN, IS, MS), pp. 2034–2042.
ICMLICML-2018-IcarteKVM #composition #specification #using
Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning (RTI, TQK, RAV, SAM), pp. 2112–2121.
ICMLICML-2018-IglZLWW
Deep Variational Reinforcement Learning for POMDPs (MI, LMZ, TAL, FW, SW), pp. 2122–2131.
ICMLICML-2018-IlseTW #multi
Attention-based Deep Multiple Instance Learning (MI, JMT, MW), pp. 2132–2141.
ICMLICML-2018-JaffeWCKN #approach #modelling
Learning Binary Latent Variable Models: A Tensor Eigenpair Approach (AJ, RW, SC, YK, BN), pp. 2201–2210.
ICMLICML-2018-JawanpuriaM #framework #matrix #rank
A Unified Framework for Structured Low-rank Matrix Learning (PJ, BM), pp. 2259–2268.
ICMLICML-2018-JeongS #performance
Efficient end-to-end learning for quantizable representations (YJ, HOS), pp. 2269–2278.
ICMLICML-2018-JiangEL
Feedback-Based Tree Search for Reinforcement Learning (DRJ, EE, HL), pp. 2289–2298.
ICMLICML-2018-JiangZLLF #data-driven #education #named #network
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels (LJ0, ZZ, TL, LJL, LFF0), pp. 2309–2318.
ICMLICML-2018-JinKL18a
Regret Minimization for Partially Observable Deep Reinforcement Learning (PHJ, KK, SL), pp. 2347–2356.
ICMLICML-2018-Johnson0 #functional #generative #modelling
Composite Functional Gradient Learning of Generative Adversarial Models (RJ, TZ0), pp. 2376–2384.
ICMLICML-2018-KalimerisSSW #using
Learning Diffusion using Hyperparameters (DK, YS, KS, UW), pp. 2425–2433.
ICMLICML-2018-KalyanLKB #multi
Learn from Your Neighbor: Learning Multi-modal Mappings from Sparse Annotations (AK, SL, AK, DB), pp. 2454–2463.
ICMLICML-2018-KamnitsasCFWTRG #clustering
Semi-Supervised Learning via Compact Latent Space Clustering (KK, DCC, LLF, IW, RT, DR, BG, AC, AVN), pp. 2464–2473.
ICMLICML-2018-KaplanisSC
Continual Reinforcement Learning with Complex Synapses (CK, MS, CC), pp. 2502–2511.
ICMLICML-2018-KatharopoulosF
Not All Samples Are Created Equal: Deep Learning with Importance Sampling (AK, FF), pp. 2530–2539.
ICMLICML-2018-KearnsNRW
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness (MJK, SN, AR0, ZSW), pp. 2569–2577.
ICMLICML-2018-KennamerKIS #classification #named
ContextNet: Deep learning for Star Galaxy Classification (NK, DK, ATI, FJSL), pp. 2587–2595.
ICMLICML-2018-KhanNTLGS #performance #scalability
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam (MEK, DN, VT, WL, YG, AS), pp. 2616–2625.
ICMLICML-2018-KuleshovFE #nondeterminism #using
Accurate Uncertainties for Deep Learning Using Calibrated Regression (VK, NF, SE), pp. 2801–2809.
ICMLICML-2018-LeeKCL #case study #game studies
Deep Reinforcement Learning in Continuous Action Spaces: a Case Study in the Game of Simulated Curling (KL, SAK, JC, SWL), pp. 2943–2952.
ICMLICML-2018-LeeYH #multi #symmetry
Deep Asymmetric Multi-task Feature Learning (HL, EY, SJH), pp. 2962–2970.
ICMLICML-2018-LehtinenMHLKAA #image #named
Noise2Noise: Learning Image Restoration without Clean Data (JL, JM, JH, SL, TK, MA, TA), pp. 2971–2980.
ICMLICML-2018-LiangLNMFGGJS #abstraction #distributed #named
RLlib: Abstractions for Distributed Reinforcement Learning (EL, RL, RN, PM, RF, KG, JG, MIJ, IS), pp. 3059–3068.
ICMLICML-2018-LiaoC18a #approach #matrix #random
The Dynamics of Learning: A Random Matrix Approach (ZL, RC), pp. 3078–3087.
ICMLICML-2018-LiGD #bias #induction #network
Explicit Inductive Bias for Transfer Learning with Convolutional Networks (XL0, YG, FD), pp. 2830–2839.
ICMLICML-2018-LiH #approach #network
An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks (QL, SH), pp. 2991–3000.
ICMLICML-2018-LinC #distributed #multi #probability
Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods (JL, VC), pp. 3098–3107.
ICMLICML-2018-LongLMD #named
PDE-Net: Learning PDEs from Data (ZL, YL, XM, BD0), pp. 3214–3222.
ICMLICML-2018-LuoSZLZW
End-to-end Active Object Tracking via Reinforcement Learning (WL, PS, FZ, WL0, TZ0, YW), pp. 3292–3301.
ICMLICML-2018-MaBB #comprehension #effectiveness #power of
The Power of Interpolation: Understanding the Effectiveness of SGD in Modern Over-parametrized Learning (SM, RB, MB), pp. 3331–3340.
ICMLICML-2018-MadrasCPZ
Learning Adversarially Fair and Transferable Representations (DM, EC, TP, RSZ), pp. 3381–3390.
ICMLICML-2018-MalikPFHRD #performance
An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning (DM, MP, JFF, DHM, SJR, ADD), pp. 3391–3399.
ICMLICML-2018-MaWHZEXWB
Dimensionality-Driven Learning with Noisy Labels (XM, YW0, MEH, SZ0, SME, STX, SNRW, JB0), pp. 3361–3370.
ICMLICML-2018-MeyersonM #multi #pseudo
Pseudo-task Augmentation: From Deep Multitask Learning to Intratask Sharing-and Back (EM, RM), pp. 3508–3517.
ICMLICML-2018-MhamdiGR #distributed
The Hidden Vulnerability of Distributed Learning in Byzantium (EMEM, RG, SR), pp. 3518–3527.
ICMLICML-2018-MishchenkoIMA #algorithm #distributed
A Delay-tolerant Proximal-Gradient Algorithm for Distributed Learning (KM, FI, JM, MRA), pp. 3584–3592.
ICMLICML-2018-Nachum0TS #policy
Smoothed Action Value Functions for Learning Gaussian Policies (ON, MN0, GT, DS), pp. 3689–3697.
ICMLICML-2018-NguyenSH #on the
On Learning Sparsely Used Dictionaries from Incomplete Samples (TVN, AS, CH), pp. 3766–3775.
ICMLICML-2018-NickelK #geometry
Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry (MN, DK), pp. 3776–3785.
ICMLICML-2018-OglicG #kernel
Learning in Reproducing Kernel Krein Spaces (DO, TG0), pp. 3856–3864.
ICMLICML-2018-OhGSL #self
Self-Imitation Learning (JO, YG, SS, HL), pp. 3875–3884.
ICMLICML-2018-OkunoHS #framework #multi #network #probability
A probabilistic framework for multi-view feature learning with many-to-many associations via neural networks (AO, TH, HS), pp. 3885–3894.
ICMLICML-2018-OsamaZS #locality #modelling #streaming
Learning Localized Spatio-Temporal Models From Streaming Data (MO, DZ, TBS), pp. 3924–3932.
ICMLICML-2018-Oymak #network
Learning Compact Neural Networks with Regularization (SO), pp. 3963–3972.
ICMLICML-2018-PaassenGMH #adaptation #distance #edit distance
Tree Edit Distance Learning via Adaptive Symbol Embeddings (BP, CG, AM, BH), pp. 3973–3982.
ICMLICML-2018-PanFWNGN #difference #equation
Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control (YP, AmF, MW, SN, PG, DN), pp. 3983–3992.
ICMLICML-2018-PanS #predict
Learning to Speed Up Structured Output Prediction (XP, VS), pp. 3993–4002.
ICMLICML-2018-PanZD #analysis
Theoretical Analysis of Image-to-Image Translation with Adversarial Learning (XP, MZ, DD), pp. 4003–4012.
ICMLICML-2018-ParascandoloKRS #independence
Learning Independent Causal Mechanisms (GP, NK, MRC, BS), pp. 4033–4041.
ICMLICML-2018-PardoTLK
Time Limits in Reinforcement Learning (FP, AT, VL, PK), pp. 4042–4051.
ICMLICML-2018-PearceBZN #approach #predict
High-Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled Approach (TP, AB, MZ, AN), pp. 4072–4081.
ICMLICML-2018-PretoriusKK #linear
Learning Dynamics of Linear Denoising Autoencoders (AP, SK, HK), pp. 4138–4147.
ICMLICML-2018-PuDGWWZHC #generative #multi #named
JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets (YP, SD, ZG, WW, GW0, YZ, RH, LC), pp. 4148–4157.
ICMLICML-2018-RaeDDL #parametricity #performance
Fast Parametric Learning with Activation Memorization (JWR, CD, PD, TPL), pp. 4225–4234.
ICMLICML-2018-RaghuIAKLK #game studies #question
Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games? (MR, AI, JA, RK, QVL, JMK), pp. 4235–4243.
ICMLICML-2018-RaileanuDSF #modelling #multi #using
Modeling Others using Oneself in Multi-Agent Reinforcement Learning (RR, ED, AS, RF), pp. 4254–4263.
ICMLICML-2018-RashidSWFFW #multi #named
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning (TR, MS, CSdW, GF, JNF, SW), pp. 4292–4301.
ICMLICML-2018-RavuriMRV #generative #modelling
Learning Implicit Generative Models with the Method of Learned Moments (SVR, SM, MR, OV), pp. 4311–4320.
ICMLICML-2018-RenZYU #robust
Learning to Reweight Examples for Robust Deep Learning (MR, WZ, BY, RU), pp. 4331–4340.
ICMLICML-2018-RiedmillerHLNDW #game studies
Learning by Playing Solving Sparse Reward Tasks from Scratch (MAR, RH, TL, MN, JD, TVdW, VM, NH, JTS), pp. 4341–4350.
ICMLICML-2018-RobertsERHE #music
A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music (AR, JHE, CR, CH, DE), pp. 4361–4370.
ICMLICML-2018-RosenfeldBGS #combinator
Learning to Optimize Combinatorial Functions (NR, EB, AG, YS), pp. 4371–4380.
ICMLICML-2018-SahooLM #equation
Learning Equations for Extrapolation and Control (SSS, CHL, GM), pp. 4439–4447.
ICMLICML-2018-SchmitJ
Learning with Abandonment (SS, RJ), pp. 4516–4524.
ICMLICML-2018-SchwabKMMSK #multi
Not to Cry Wolf: Distantly Supervised Multitask Learning in Critical Care (PS, EK, CM, DJM, CS, WK), pp. 4525–4534.
ICMLICML-2018-Schwarz0LGTPH #framework #scalability
Progress & Compress: A scalable framework for continual learning (JS, WC0, JL, AGB, YWT, RP, RH), pp. 4535–4544.
ICMLICML-2018-ShazeerS #adaptation #memory management #named #sublinear
Adafactor: Adaptive Learning Rates with Sublinear Memory Cost (NS, MS), pp. 4603–4611.
ICMLICML-2018-SheldonWS #automation #difference #integer #modelling
Learning in Integer Latent Variable Models with Nested Automatic Differentiation (DS, KW, DS), pp. 4622–4630.
ICMLICML-2018-ShenMZZQ #communication #convergence #distributed #performance #probability #towards
Towards More Efficient Stochastic Decentralized Learning: Faster Convergence and Sparse Communication (ZS, AM, TZ, PZ, HQ), pp. 4631–4640.
ICMLICML-2018-ShiarlisWSWP #composition #named
TACO: Learning Task Decomposition via Temporal Alignment for Control (KS, MW, SS, SW, IP), pp. 4661–4670.
ICMLICML-2018-SibliniMK #clustering #multi #performance #random
CRAFTML, an Efficient Clustering-based Random Forest for Extreme Multi-label Learning (WS, FM, PK), pp. 4671–4680.
ICMLICML-2018-SmithHP #policy
An Inference-Based Policy Gradient Method for Learning Options (MS, HvH, JP), pp. 4710–4719.
ICMLICML-2018-SrinivasJALF #network
Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control (AS, AJ, PA, SL, CF), pp. 4739–4748.
ICMLICML-2018-SroujiZS
Structured Control Nets for Deep Reinforcement Learning (MS, JZ, RS), pp. 4749–4758.
ICMLICML-2018-SunZWZLG #composition #kernel #process
Differentiable Compositional Kernel Learning for Gaussian Processes (SS, GZ, CW, WZ, JL, RBG), pp. 4835–4844.
ICMLICML-2018-SuW
Learning Low-Dimensional Temporal Representations (BS, YW), pp. 4768–4777.
ICMLICML-2018-Talvitie
Learning the Reward Function for a Misspecified Model (ET), pp. 4845–4854.
ICMLICML-2018-ThomasDB
Decoupling Gradient-Like Learning Rules from Representations (PST, CD, EB), pp. 4924–4932.
ICMLICML-2018-TianZZ #named
CoVeR: Learning Covariate-Specific Vector Representations with Tensor Decompositions (KT, TZ, JZ), pp. 4933–4942.
ICMLICML-2018-TirinzoniSPR
Importance Weighted Transfer of Samples in Reinforcement Learning (AT, AS, MP, MR), pp. 4943–4952.
ICMLICML-2018-TrinhDLL #dependence
Learning Longer-term Dependencies in RNNs with Auxiliary Losses (THT, AMD, TL, QVL), pp. 4972–4981.
ICMLICML-2018-TschannenKA #multi #named
StrassenNets: Deep Learning with a Multiplication Budget (MT, AK, AA), pp. 4992–5001.
ICMLICML-2018-TuckerBGTGL
The Mirage of Action-Dependent Baselines in Reinforcement Learning (GT, SB, SG, RET, ZG, SL), pp. 5022–5031.
ICMLICML-2018-TuR #difference #linear #polynomial
Least-Squares Temporal Difference Learning for the Linear Quadratic Regulator (ST, BR), pp. 5012–5021.
ICMLICML-2018-VermaMSKC
Programmatically Interpretable Reinforcement Learning (AV, VM, RS, PK, SC), pp. 5052–5061.
ICMLICML-2018-VogelBC #optimisation #probability #similarity
A Probabilistic Theory of Supervised Similarity Learning for Pointwise ROC Curve Optimization (RV, AB, SC), pp. 5062–5071.
ICMLICML-2018-WagnerGKM #data type
Semi-Supervised Learning on Data Streams via Temporal Label Propagation (TW, SG, SPK, NM), pp. 5082–5091.
ICMLICML-2018-WangGLWY #predict #towards
PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning (YW, ZG, ML, JW0, PSY), pp. 5110–5119.
ICMLICML-2018-WangK #multi
Competitive Multi-agent Inverse Reinforcement Learning with Sub-optimal Demonstrations (XW, DK), pp. 5130–5138.
ICMLICML-2018-WangSQ #modelling #multi #performance #scalability #visual notation
A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models (BW, AS, YQ), pp. 5148–5157.
ICMLICML-2018-WeinshallCA #education #network
Curriculum Learning by Transfer Learning: Theory and Experiments with Deep Networks (DW, GC, DA), pp. 5235–5243.
ICMLICML-2018-WeiZHY
Transfer Learning via Learning to Transfer (YW, YZ, JH, QY), pp. 5072–5081.
ICMLICML-2018-XiaTTQYL
Model-Level Dual Learning (YX, XT, FT, TQ, NY, TYL), pp. 5379–5388.
ICMLICML-2018-XieWZX #analysis #distance #metric
Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis (PX, WW, YZ, EPX), pp. 5399–5408.
ICMLICML-2018-XieZCC #adaptation #semantics
Learning Semantic Representations for Unsupervised Domain Adaptation (SX, ZZ, LC0, CC), pp. 5419–5428.
ICMLICML-2018-XuCZ #process
Learning Registered Point Processes from Idiosyncratic Observations (HX, LC, HZ), pp. 5439–5448.
ICMLICML-2018-XuLTSKJ #graph #network #representation
Representation Learning on Graphs with Jumping Knowledge Networks (KX, CL, YT, TS, KiK, SJ), pp. 5449–5458.
ICMLICML-2018-XuLZP
Learning to Explore via Meta-Policy Gradient (TX, QL0, LZ, JP0), pp. 5459–5468.
ICMLICML-2018-XuZFLB #semantics
A Semantic Loss Function for Deep Learning with Symbolic Knowledge (JX, ZZ, TF, YL, GVdB), pp. 5498–5507.
ICMLICML-2018-YanCJ
Active Learning with Logged Data (SY, KC, TJ), pp. 5517–5526.
ICMLICML-2018-YangKU #equivalence #graph
Characterizing and Learning Equivalence Classes of Causal DAGs under Interventions (KDY, AK, CU), pp. 5537–5546.
ICMLICML-2018-YangLLZZW #multi
Mean Field Multi-Agent Reinforcement Learning (YY, RL, ML, MZ, WZ0, JW0), pp. 5567–5576.
ICMLICML-2018-YenKYHKR #composition #performance #scalability
Loss Decomposition for Fast Learning in Large Output Spaces (IEHY, SK, FXY, DNHR, SK, PR), pp. 5626–5635.
ICMLICML-2018-YinCRB #distributed #statistics #towards
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates (DY, YC0, KR, PLB), pp. 5636–5645.
ICMLICML-2018-YonaR #approximate
Probably Approximately Metric-Fair Learning (GY, GNR), pp. 5666–5674.
ICMLICML-2018-ZanetteB #bound #identification #problem
Problem Dependent Reinforcement Learning Bounds Which Can Identify Bandit Structure in MDPs (AZ, EB), pp. 5732–5740.
ICMLICML-2018-ZhangLSD #dependence #fourier
Learning Long Term Dependencies via Fourier Recurrent Units (JZ, YL, ZS, ISD), pp. 5810–5818.
ICMLICML-2018-ZhangYL0B #distributed #multi
Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents (KZ, ZY, HL0, TZ0, TB), pp. 5867–5876.
ICMLICML-2018-Zhao0FYW #estimation #feature model
MSplit LBI: Realizing Feature Selection and Dense Estimation Simultaneously in Few-shot and Zero-shot Learning (BZ, XS0, YF, YY0, YW), pp. 5907–5916.
ICMLICML-2018-ZhaoDBZ #topic #word
Inter and Intra Topic Structure Learning with Word Embeddings (HZ, LD, WLB, MZ), pp. 5887–5896.
ICPRICPR-2018-AfonsoPSP #classification #using
Improving Optimum- Path Forest Classification Using Unsupervised Manifold Learning (LCSA, DCGP, ANdS, JPP), pp. 560–565.
ICPRICPR-2018-Aldana-LopezCZG #approach #network
Dynamic Learning Rate for Neural Networks: A Fixed-Time Stability Approach (RAL, LECM, JZ, DGG, AC), pp. 1378–1383.
ICPRICPR-2018-BiFW #constraints #metric
Cayley- Klein Metric Learning with Shrinkage-Expansion Constraints (YB, BF, FW), pp. 43–48.
ICPRICPR-2018-CaoCHP #identification #metric
Region-specific Metric Learning for Person Re-identification (MC, CC0, XH, SP), pp. 794–799.
ICPRICPR-2018-CaoGWXW #detection
Gaze-Aided Eye Detection via Appearance Learning (LC, CG, KW, GX, FYW0), pp. 1965–1970.
ICPRICPR-2018-CaoLL0JJC #detection #image
Deep Learning Based Bioresorbable Vascular Scaffolds Detection in IVOCT Images (YC, YL, JL, RZ0, QJ, JJ, YC), pp. 3778–3783.
ICPRICPR-2018-CuiB00JH #graph #hybrid #kernel #network
A Deep Hybrid Graph Kernel Through Deep Learning Networks (LC, LB0, LR0, YW0, YJ0, ERH), pp. 1030–1035.
ICPRICPR-2018-CuiZZH #multi #network #recognition #using
Multi-source Learning for Skeleton -based Action Recognition Using Deep LSTM Networks (RC, AZ, SZ, GH0), pp. 547–552.
ICPRICPR-2018-DasRBP #classification #documentation #image #network
Document Image Classification with Intra-Domain Transfer Learning and Stacked Generalization of Deep Convolutional Neural Networks (AD, SR, UB, SKP), pp. 3180–3185.
ICPRICPR-2018-Dey0GVLP #image #multi #retrieval #sketching #using
Learning Cross-Modal Deep Embeddings for Multi-Object Image Retrieval using Text and Sketch (SD, AD0, SKG, EV, JL0, UP0), pp. 916–921.
ICPRICPR-2018-DuCWP #distributed #named #representation
Zone2Vec: Distributed Representation Learning of Urban Zones (JD, YC, YW0, JP), pp. 880–885.
ICPRICPR-2018-EleziTVP #network
Transductive Label Augmentation for Improved Deep Network Learning (IE, AT, SV, MP), pp. 1432–1437.
ICPRICPR-2018-FuGA #detection #scalability
Simultaneous Context Feature Learning and Hashing for Large Scale Loop Closure Detection (ZF, YG, WA), pp. 1689–1694.
ICPRICPR-2018-GaoDS
Discernibility Matrix-Based Ensemble Learning (SG, JD, HS), pp. 952–957.
ICPRICPR-2018-GaolLH0W #automation #multi #predict
Automatic Facial Attractiveness Prediction by Deep Multi-Task Learning (LG, WL, ZH, DH0, YW), pp. 3592–3597.
ICPRICPR-2018-GrelssonF #exponential #linear #network
Improved Learning in Convolutional Neural Networks with Shifted Exponential Linear Units (ShELUs) (BG, MF), pp. 517–522.
ICPRICPR-2018-GuptaMSM #image #order #ranking #similarity
Learning an Order Preserving Image Similarity through Deep Ranking (NG, SM, SS, SM), pp. 1115–1120.
ICPRICPR-2018-HailatK0
Deep Semi-Supervised Learning (ZH, AK, XwC0), pp. 2154–2159.
ICPRICPR-2018-HanXW #generative #multi #network #representation
Learning Multi-view Generator Network for Shared Representation (TH0, XX, YNW), pp. 2062–2068.
ICPRICPR-2018-HanXZL #composition #image #network
Learning Intrinsic Image Decomposition by Deep Neural Network with Perceptual Loss (GH, XX, WSZ, JL), pp. 91–96.
ICPRICPR-2018-HaoDWT #fine-grained #named #representation #retrieval
DeepFirearm: Learning Discriminative Feature Representation for Fine-grained Firearm Retrieval (JH, JD0, WW0, TT), pp. 3335–3340.
ICPRICPR-2018-HeGG #network
Structure Learning of Bayesian Networks by Finding the Optimal Ordering (CCH, XGG, ZgG), pp. 177–182.
ICPRICPR-2018-HuangWDSL #image #lightweight
Lightweight Deep Residue Learning for Joint Color Image Demosaicking and Denoising (TH, FW, WD, GS, XL0), pp. 127–132.
ICPRICPR-2018-HuKLFLZD #named #representation
FV-Net: learning a finger-vein feature representation based on a CNN (HH, WK, YL, YF, HL, JZ, FD), pp. 3489–3494.
ICPRICPR-2018-JiangLSWZW #identification #similarity
Orientation-Guided Similarity Learning for Person Re-identification (NJ, JL, CS, YW, ZZ, WW), pp. 2056–2061.
ICPRICPR-2018-LeiZH0HL #classification #multi #rank
Multi-classification of Parkinson's Disease via Sparse Low-Rank Learning (HL, YZ, ZH, FZ0, LH, BL), pp. 3268–3272.
ICPRICPR-2018-LiCQWW #adaptation #network #semantics
Cross-domain Semantic Feature Learning via Adversarial Adaptation Networks (RL, WmC0, SQ, HSW, SW), pp. 37–42.
ICPRICPR-2018-LiL #metric
Riemannian Metric Learning based on Curvature Flow (YL, RL), pp. 806–811.
ICPRICPR-2018-LingLZG #classification #image #network
Semi-Supervised Learning via Convolutional Neural Network for Hyperspectral Image Classification (ZL, XL, WZ, SG), pp. 1–6.
ICPRICPR-2018-LiuDWZWZ #classification #education #image
Teaching Squeeze-and-Excitation PyramidNet for Imbalanced Image Classification with GAN-based Curriculum Learning (JL, AD, CW0, HZ, NW0, BZ), pp. 2444–2449.
ICPRICPR-2018-LiWK18a #framework #image #using
Infrared and Visible Image Fusion using a Deep Learning Framework (HL0, XJW, JK), pp. 2705–2710.
ICPRICPR-2018-LuoZLW #clustering #graph #image
Graph Embedding-Based Ensemble Learning for Image Clustering (XL, LZ0, FL, BW), pp. 213–218.
ICPRICPR-2018-LyuYCZZ #classification #detection
Learning Fixation Point Strategy for Object Detection and Classification (JL0, ZY, DC, YZ, HZ), pp. 2081–2086.
ICPRICPR-2018-MaBCX0 #collaboration #visual notation
Learning Collaborative Model for Visual Tracking (DM, WB, YC, YX, XW0), pp. 2582–2587.
ICPRICPR-2018-MadapanaW #gesture #recognition
Hard Zero Shot Learning for Gesture Recognition (NM, JPW), pp. 3574–3579.
ICPRICPR-2018-MaierSSWSCF #network #precise #towards #using
Precision Learning: Towards Use of Known Operators in Neural Networks (AKM, FS, CS, TW, SS, JHC, RF), pp. 183–188.
ICPRICPR-2018-ManessiR
Learning Combinations of Activation Functions (FM, AR), pp. 61–66.
ICPRICPR-2018-NguyenNSADF #recognition
Meta Transfer Learning for Facial Emotion Recognition (DNT, KN0, SS, IA, DD, CF), pp. 3543–3548.
ICPRICPR-2018-NguyenTL #data-driven #using
Are French Really That Different? Recognizing Europeans from Faces Using Data-Driven Learning (VDN, MT, JL), pp. 2729–2734.
ICPRICPR-2018-NieLQZJ #algorithm #classification #incremental #multi
An Incremental Multi-view Active Learning Algorithm for PolSAR Data Classification (XN, YL, HQ, BZ0, ZPJ), pp. 2251–2255.
ICPRICPR-2018-NiuHSC #named
SynRhythm: Learning a Deep Heart Rate Estimator from General to Specific (XN, HH, SS, XC), pp. 3580–3585.
ICPRICPR-2018-NiuS0 #graph
Enhancing Knowledge Graph Completion with Positive Unlabeled Learning (JN, ZS, WZ0), pp. 296–301.
ICPRICPR-2018-PangDWH
Dynamic Ensemble Active Learning: A Non-Stationary Bandit with Expert Advice (KP, MD, YW, TMH), pp. 2269–2276.
ICPRICPR-2018-PeiFR #multi
Learning with Latent Label Hierarchy from Incomplete Multi-Label Data (YP, XZF, RR), pp. 2075–2080.
ICPRICPR-2018-PengLMSL #detection #image #sequence #video
Driving Maneuver Detection via Sequence Learning from Vehicle Signals and Video Images (XP, RL, YLM, SS, YL), pp. 1265–1270.
ICPRICPR-2018-RenZLLWY #rank #representation #robust #taxonomy
Robust Projective Low-Rank and Sparse Representation by Robust Dictionary Learning (JR, ZZ0, SL0, GL, MW0, SY), pp. 1851–1856.
ICPRICPR-2018-RibaFLF #graph #message passing #network
Learning Graph Distances with Message Passing Neural Networks (PR, AF0, JL0, AF), pp. 2239–2244.
ICPRICPR-2018-RoyT #higher-order #using
Learning to Learn Second-Order Back-Propagation for CNNs Using LSTMs (AR, ST), pp. 97–102.
ICPRICPR-2018-RuedaF #process #recognition #representation
Learning Attribute Representation for Human Activity Recognition (FMR, GAF), pp. 523–528.
ICPRICPR-2018-SahaVJ #named
Class2Str: End to End Latent Hierarchy Learning (SS, GV, CVJ), pp. 1000–1005.
ICPRICPR-2018-SiddiquiV0 #approach #recognition
Face Recognition for Newborns, Toddlers, and Pre-School Children: A Deep Learning Approach (SS, MV, RS0), pp. 3156–3161.
ICPRICPR-2018-SuiZYC #detection #framework #novel #recognition
A Novel Integrated Framework for Learning both Text Detection and Recognition (WS, QZ, JY, WC), pp. 2233–2238.
ICPRICPR-2018-SunCWX #coordination #metric #online #parallel #rank
Online Low-Rank Metric Learning via Parallel Coordinate Descent Method (GS, YC, QW0, XX), pp. 207–212.
ICPRICPR-2018-SunZJLWY #adaptation #robust #taxonomy
Robust Discriminative Projective Dictionary Pair Learning by Adaptive Representations (YS, ZZ0, WJ, GL, MW0, SY), pp. 621–626.
ICPRICPR-2018-SunZWJ #behaviour #detection
Weak Supervised Learning Based Abnormal Behavior Detection (XS, SZ, SW, XYJ), pp. 1580–1585.
ICPRICPR-2018-TayanovKS #classification #predict #using
Prediction-based classification using learning on Riemannian manifolds (VT, AK, CYS), pp. 591–596.
ICPRICPR-2018-VinayavekhinCMA #comprehension #using #what
Focusing on What is Relevant: Time-Series Learning and Understanding using Attention (PV, SC, AM, DJA, GDM, DK, RT), pp. 2624–2629.
ICPRICPR-2018-WangHJ #using
Focus on Scene Text Using Deep Reinforcement Learning (HW, SH, LJ), pp. 3759–3765.
ICPRICPR-2018-WangSSL #metric
Nonlinear Metric Learning through Geodesic Interpolation within Lie Groups (ZW, BS, CDS, JL), pp. 898–903.
ICPRICPR-2018-WangWCK #classification #image #metric #multi #set
Multiple Manifolds Metric Learning with Application to Image Set Classification (RW, XJW, KXC, JK), pp. 627–632.
ICPRICPR-2018-WangWL #education #performance
Weakly- and Semi-supervised Faster R-CNN with Curriculum Learning (JW, XW, WL0), pp. 2416–2421.
ICPRICPR-2018-WenWSY #adaptation #recognition #representation
Adaptive convolution local and global learning for class-level joint representation of face recognition with single sample per person (WW, XW0, LS, MY0), pp. 3537–3542.
ICPRICPR-2018-WitmerB #classification #image #multi #using
Multi-label Classification of Stem Cell Microscopy Images Using Deep Learning (AW, BB), pp. 1408–1413.
ICPRICPR-2018-WuLCW #multi #semantics
Learning a Hierarchical Latent Semantic Model for Multimedia Data (SHW, YSL, SHC, JCW), pp. 2995–3000.
ICPRICPR-2018-WuYSZ #identification #ranking
Joint Semi-supervised Learning and Re-ranking for Vehicle Re-identification (FW, SY, JSS, BZ), pp. 278–283.
ICPRICPR-2018-XuCG #modelling #multi #random #using
Common Random Subgraph Modeling Using Multiple Instance Learning (TX, DKYC, IG), pp. 1205–1210.
ICPRICPR-2018-XuWK #correlation #representation
Non-negative Subspace Representation Learning Scheme for Correlation Filter Based Tracking (TX, XJW, JK), pp. 1888–1893.
ICPRICPR-2018-XuZL18a #incremental #kernel #linear #online
A Linear Incremental Nyström Method for Online Kernel Learning (SX, XZ, SL), pp. 2256–2261.
ICPRICPR-2018-YangDWL
Masked Label Learning for Optical Flow Regression (GY, ZD, SW, ZL), pp. 1139–1144.
ICPRICPR-2018-YanWSLZ #image #network #using
Image Captioning using Adversarial Networks and Reinforcement Learning (SY, FW, JSS, WL, BZ), pp. 248–253.
ICPRICPR-2018-Ye0 #classification #image #invariant
Rotational Invariant Discriminant Subspace Learning For Image Classification (QY, ZZ0), pp. 1217–1222.
ICPRICPR-2018-YuanTLDZ #automation #multi #segmentation #using
Fully Automatic Segmentation of the Left Ventricle Using Multi-Scale Fusion Learning (TY, QT, XL, XD, JZ), pp. 3838–3843.
ICPRICPR-2018-YuanWXZ #empirical #estimation #multi
Multiple- Instance Learning with Empirical Estimation Guided Instance Selection (LY, XW, HX, LZ), pp. 770–775.
ICPRICPR-2018-YuanZLQ0S #adaptation #canonical #correlation #parallel #recognition
Learning Parallel Canonical Correlations for Scale-Adaptive Low Resolution Face Recognition (YY, ZZ, YL0, JPQ, BL0, XBS), pp. 922–927.
ICPRICPR-2018-ZengZQQB0 #image
Single Image Super-Resolution With Learning Iteratively Non-Linear Mapping Between Low- and High-Resolution Sparse Representations (KZ, HZ, YQ, XQ, LB, ZC0), pp. 507–512.
ICPRICPR-2018-ZhangJCXP #approach #graph #kernel #network
Kernel-Weighted Graph Convolutional Network: A Deep Learning Approach for Traffic Forecasting (QZ, QJ, JC, SX, CP), pp. 1018–1023.
ICPRICPR-2018-ZhangWG #adaptation #multi #representation
Adaptive Latent Representation for Multi-view Subspace Learning (YZ, XW, XG), pp. 1229–1234.
ICPRICPR-2018-ZhangWGWXL #detection #effectiveness #network
An Effective Deep Learning Based Scheme for Network Intrusion Detection (HZ, CQW, SG, ZW, YX, YL), pp. 682–687.
ICPRICPR-2018-ZhaoPL0DWQ #locality #semantics #topic #using
Learning Topics Using Semantic Locality (ZZ, KP, SL, ZL0, CD, YW, QQ), pp. 3710–3715.
ICPRICPR-2018-ZhouL0LL #estimation
Scale and Orientation Aware EPI-Patch Learning for Light Field Depth Estimation (WZ, LL, HZ, AL, LL), pp. 2362–2367.
ICPRICPR-2018-ZhouMMB #detection
Learning Training Samples for Occlusion Edge Detection and Its Application in Depth Ordering Inference (YZ0, JM, AM, XB), pp. 541–546.
ICPRICPR-2018-ZhouWD #online #realtime #robust
Online Learning of Spatial-Temporal Convolution Response for Robust Real-Time Tracking (JZ, RW, JD), pp. 1821–1826.
ICPRICPR-2018-Zhuang0CW #classification #multi
Multi-task Learning of Cascaded CNN for Facial Attribute Classification (NZ, YY0, SC, HW), pp. 2069–2074.
ICPRICPR-2018-ZhuangTYMZJX #image #named #representation #segmentation #semantics
RelationNet: Learning Deep-Aligned Representation for Semantic Image Segmentation (YZ, LT, FY, CM, ZZ, HJ, XX), pp. 1506–1511.
ICPRICPR-2018-ZhuX #approximate #graph #scalability
Scalable Semi-Supervised Learning by Graph Construction with Approximate Anchors Embedding (HZ, MX), pp. 1331–1336.
ICPRICPR-2018-ZhuZZ
Learning Evasion Strategy in Pursuit-Evasion by Deep Q-network (JZ, WZ, ZZ), pp. 67–72.
ICPRICPR-2018-ZhuZZ18b #recognition #representation
End-to-end Video-level Representation Learning for Action Recognition (JZ, ZZ, WZ), pp. 645–650.
KDDKDD-2018-0009QG0H #realtime
Deep Reinforcement Learning for Sponsored Search Real-time Bidding (JZ0, GQ, ZG, WZ0, XH), pp. 1021–1030.
KDDKDD-2018-BaiZEV #representation
Interpretable Representation Learning for Healthcare via Capturing Disease Progression through Time (TB, SZ, BLE, SV), pp. 43–51.
KDDKDD-2018-CaiWGSJ #multi
Deep Adversarial Learning for Multi-Modality Missing Data Completion (LC, ZW, HG, DS, SJ), pp. 1158–1166.
KDDKDD-2018-CardosoDV #personalisation #recommendation #semistructured data #towards
Product Characterisation towards Personalisation: Learning Attributes from Unstructured Data to Recommend Fashion Products (ÂC, FD, SV), pp. 80–89.
KDDKDD-2018-Chen0DTHT #online #recommendation
Stabilizing Reinforcement Learning in Dynamic Environment with Application to Online Recommendation (SYC, YY0, QD, JT, HKH, HHT), pp. 1187–1196.
KDDKDD-2018-DasSCHLCKC #named #performance #using
SHIELD: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression (ND, MS, STC, FH, SL, LC, MEK, DHC), pp. 196–204.
KDDKDD-2018-DiPSC #morphism
Transfer Learning via Feature Isomorphism Discovery (SD, JP, YS, LC), pp. 1301–1309.
KDDKDD-2018-DonnatZHL
Learning Structural Node Embeddings via Diffusion Wavelets (CD, MZ, DH, JL), pp. 1320–1329.
KDDKDD-2018-FoxAJPW #multi #predict
Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories (IF, LA, MJ, RPB, JW), pp. 1387–1395.
KDDKDD-2018-FuWHW #approximate #fault #reduction #scalability
Scalable Active Learning by Approximated Error Reduction (WF, MW, SH, XW0), pp. 1396–1405.
KDDKDD-2018-GohSVH #predict #rule-based #using
Using Rule-Based Labels for Weak Supervised Learning: A ChemNet for Transferable Chemical Property Prediction (GBG, CS, AV, NOH), pp. 302–310.
KDDKDD-2018-GorovitsGPB #community #named
LARC: Learning Activity-Regularized Overlapping Communities Across Time (AG, EG, EEP, PB), pp. 1465–1474.
KDDKDD-2018-GuYCH #algorithm #incremental
New Incremental Learning Algorithm for Semi-Supervised Support Vector Machine (BG, XTY, SC, HH), pp. 1475–1484.
KDDKDD-2018-HanSSZ #collaboration #multi #semistructured data
Multi-label Learning with Highly Incomplete Data via Collaborative Embedding (YH, GS, YS, XZ0), pp. 1494–1503.
KDDKDD-2018-HongCL #kernel
Disturbance Grassmann Kernels for Subspace-Based Learning (JH, HC, FL), pp. 1521–1530.
KDDKDD-2018-HuaiMLSSZ #metric #probability
Metric Learning from Probabilistic Labels (MH, CM, YL, QS, LS, AZ), pp. 1541–1550.
KDDKDD-2018-HuDZ0X #analysis #e-commerce #formal method #rank
Reinforcement Learning to Rank in E-Commerce Search Engine: Formalization, Analysis, and Application (YH, QD, AZ, YY0, YX), pp. 368–377.
KDDKDD-2018-Janakiraman #multi #safety #using
Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning (VMJ), pp. 406–415.
KDDKDD-2018-JeongJ #multi
Variable Selection and Task Grouping for Multi-Task Learning (JYJ, CHJ), pp. 1589–1598.
KDDKDD-2018-KumagaiI #bound
Learning Dynamics of Decision Boundaries without Additional Labeled Data (AK, TI), pp. 1627–1636.
KDDKDD-2018-Le0V #memory management
Dual Memory Neural Computer for Asynchronous Two-view Sequential Learning (HL, TT0, SV), pp. 1637–1645.
KDDKDD-2018-LeeAVN #collaboration #comprehension #metric #video
Collaborative Deep Metric Learning for Video Understanding (JL, SAEH, BV, AN), pp. 481–490.
KDDKDD-2018-LiaoZWMCYGW #predict #sequence
Deep Sequence Learning with Auxiliary Information for Traffic Prediction (BL, JZ, CW0, DM, TC, SY, YG, FW), pp. 537–546.
KDDKDD-2018-LiFWSYL #estimation #multi #representation
Multi-task Representation Learning for Travel Time Estimation (YL, KF, ZW, CS, JY, YL0), pp. 1695–1704.
KDDKDD-2018-LinZXZ #multi #performance #scalability
Efficient Large-Scale Fleet Management via Multi-Agent Deep Reinforcement Learning (KL, RZ, ZX, JZ), pp. 1774–1783.
KDDKDD-2018-LiuZC #metric #performance
Efficient Similar Region Search with Deep Metric Learning (YL, KZ0, GC), pp. 1850–1859.
KDDKDD-2018-LiY #classification #network #policy
Learning Adversarial Networks for Semi-Supervised Text Classification via Policy Gradient (YL, JY), pp. 1715–1723.
KDDKDD-2018-LiZLHMC #behaviour #recommendation
Learning from History and Present: Next-item Recommendation via Discriminatively Exploiting User Behaviors (ZL, HZ, QL0, ZH, TM, EC), pp. 1734–1743.
KDDKDD-2018-LiZY #approach
Dynamic Bike Reposition: A Spatio-Temporal Reinforcement Learning Approach (YL, YZ, QY), pp. 1724–1733.
KDDKDD-2018-LuJZDZW #named #semantics #visual notation
R-VQA: Learning Visual Relation Facts with Semantic Attention for Visual Question Answering (PL, LJ, WZ0, ND, MZ0, JW), pp. 1880–1889.
KDDKDD-2018-LuoCTSLCY #information management #invariant #named #network
TINET: Learning Invariant Networks via Knowledge Transfer (CL, ZC, LAT, AS, ZL, HC, JY), pp. 1890–1899.
KDDKDD-2018-MaZYCHC #modelling #multi
Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts (JM, ZZ, XY, JC, LH, EHC), pp. 1930–1939.
KDDKDD-2018-NieHL #multi
Calibrated Multi-Task Learning (FN, ZH, XL), pp. 2012–2021.
KDDKDD-2018-NiOLLOZS #e-commerce #multi
Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks (YN, DO, SL, XL, WO, AZ, LS), pp. 596–605.
KDDKDD-2018-OshriHACDWBLE #assessment #framework #quality #using
Infrastructure Quality Assessment in Africa using Satellite Imagery and Deep Learning (BO, AH, PA, XC, PD, JW, MB, DBL, SE), pp. 616–625.
KDDKDD-2018-PangCCL #detection #random
Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection (GP, LC, LC, HL), pp. 2041–2050.
KDDKDD-2018-QiuTMDW0 #named #predict #social
DeepInf: Social Influence Prediction with Deep Learning (JQ, JT, HM, YD, KW, JT0), pp. 2110–2119.
KDDKDD-2018-RaoTL #comprehension #framework #multi #network #platform #query
Multi-Task Learning with Neural Networks for Voice Query Understanding on an Entertainment Platform (JR, FT, JL), pp. 636–645.
KDDKDD-2018-SamelM
Active Deep Learning to Tune Down the Noise in Labels (KS, XM), pp. 685–694.
KDDKDD-2018-SatoNHMHAM #detection
Managing Computer-Assisted Detection System Based on Transfer Learning with Negative Transfer Inhibition (IS, YN, SH, SM, NH, OA, YM), pp. 695–704.
KDDKDD-2018-ShiZGZ0 #network
Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks (YS, QZ, FG, CZ0, JH0), pp. 2190–2199.
KDDKDD-2018-SureshGG #multi
Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU (HS, JJG, JVG), pp. 802–810.
KDDKDD-2018-TangW #modelling #performance #ranking #recommendation
Ranking Distillation: Learning Compact Ranking Models With High Performance for Recommender System (JT, KW), pp. 2289–2298.
KDDKDD-2018-Teh #big data #on the #problem
On Big Data Learning for Small Data Problems (YWT), p. 3.
KDDKDD-2018-VandalKDGNG #nondeterminism
Quantifying Uncertainty in Discrete-Continuous and Skewed Data with Bayesian Deep Learning (TV, EK, JGD, SG, RRN, ARG), pp. 2377–2386.
KDDKDD-2018-WangFY
Learning to Estimate the Travel Time (ZW, KF, JY), pp. 858–866.
KDDKDD-2018-WangFZWZA #analysis #behaviour #how #representation
You Are How You Drive: Peer and Temporal-Aware Representation Learning for Driving Behavior Analysis (PW, YF, JZ, PW, YZ, CCA), pp. 2457–2466.
KDDKDD-2018-WangJZEC #behaviour #multi
Multi-Type Itemset Embedding for Learning Behavior Success (DW, MJ0, QZ, ZE, NVC), pp. 2397–2406.
KDDKDD-2018-WangOWW #modelling
Learning Credible Models (JW, JO, HW, JW), pp. 2417–2426.
KDDKDD-2018-WangZ #problem #towards
Towards Mitigating the Class-Imbalance Problem for Partial Label Learning (JW, MLZ), pp. 2427–2436.
KDDKDD-2018-WangZBZCY #mobile #performance #privacy
Not Just Privacy: Improving Performance of Private Deep Learning in Mobile Cloud (JW0, JZ, WB, XZ, BC, PSY), pp. 2407–2416.
KDDKDD-2018-WangZHZ #network #recommendation
Supervised Reinforcement Learning with Recurrent Neural Network for Dynamic Treatment Recommendation (LW, WZ0, XH, HZ), pp. 2447–2456.
KDDKDD-2018-WeiZYL #approach #named
IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic Light Control (HW, GZ, HY, ZL), pp. 2496–2505.
KDDKDD-2018-WuYC #realtime
Deep Censored Learning of the Winning Price in the Real Time Bidding (WCHW, MYY, MSC), pp. 2526–2535.
KDDKDD-2018-WuYYZ #process
Decoupled Learning for Factorial Marked Temporal Point Processes (WW, JY, XY, HZ), pp. 2516–2525.
KDDKDD-2018-XuLDH #metric #robust #using
New Robust Metric Learning Model Using Maximum Correntropy Criterion (JX0, LL, CD, HH), pp. 2555–2564.
KDDKDD-2018-XuLGZLNLBY #approach #on-demand #order #platform #scalability
Large-Scale Order Dispatch in On-Demand Ride-Hailing Platforms: A Learning and Planning Approach (ZX, ZL, QG, DZ, QL, JN, CL, WB, JY), pp. 905–913.
KDDKDD-2018-YangZTWCH #case study #contest #image #recognition
Deep Learning for Practical Image Recognition: Case Study on Kaggle Competitions (XY, ZZ, SGT, LW, VC0, SCHH), pp. 923–931.
KDDKDD-2018-YoshidaTK #distance #metric
Safe Triplet Screening for Distance Metric Learning (TY, IT, MK), pp. 2653–2662.
KDDKDD-2018-YuanZY #approach #named #predict
Hetero-ConvLSTM: A Deep Learning Approach to Traffic Accident Prediction on Heterogeneous Spatio-Temporal Data (ZY, XZ, TY), pp. 984–992.
KDDKDD-2018-YuZCASZCW #network
Learning Deep Network Representations with Adversarially Regularized Autoencoders (WY, CZ, WC, CCA, DS, BZ, HC, WW0), pp. 2663–2671.
KDDKDD-2018-ZangC0 #empirical
Learning and Interpreting Complex Distributions in Empirical Data (CZ, PC0, WZ0), pp. 2682–2691.
KDDKDD-2018-ZhangWLTYY #matrix #self
Discrete Ranking-based Matrix Factorization with Self-Paced Learning (YZ0, HW, DL, IWT, HY, GY), pp. 2758–2767.
KDDKDD-2018-ZhangZCMHWT #adaptation #online #symmetry
Online Adaptive Asymmetric Active Learning for Budgeted Imbalanced Data (YZ0, PZ, JC, WM, JH, QW, MT), pp. 2768–2777.
KDDKDD-2018-ZhaoLSY #e-commerce #representation
Learning and Transferring IDs Representation in E-commerce (KZ, YL, ZS, CY), pp. 1031–1039.
KDDKDD-2018-ZhaoZDXTY #feedback #recommendation
Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (XZ, LZ, ZD, LX, JT, DY), pp. 1040–1048.
KDDKDD-2018-ZhuLZLHLG #recommendation
Learning Tree-based Deep Model for Recommender Systems (HZ, XL, PZ, GL, JH, HL, KG), pp. 1079–1088.
ECOOPECOOP-2018-ChenHZHK0 #execution #program transformation #symbolic computation
Learning to Accelerate Symbolic Execution via Code Transformation (JC0, WH, LZ, DH, SK, LZ0), p. 27.
OnwardOnward-2018-RinardSM #source code
Active learning for inference and regeneration of computer programs that store and retrieve data (MCR, JS0, VM), pp. 12–28.
OOPSLAOOPSLA-2018-EzudheenND0M #contract #invariant
Horn-ICE learning for synthesizing invariants and contracts (PE, DN, DD, PG0, PM), p. 25.
OOPSLAOOPSLA-2018-PradelS #approach #debugging #detection #named
DeepBugs: a learning approach to name-based bug detection (MP, KS), p. 25.
PLDIPLDI-2018-Bastani0AL #points-to #specification
Active learning of points-to specifications (OB, RS0, AA, PL), pp. 678–692.
PLDIPLDI-2018-FengMBD #synthesis #using
Program synthesis using conflict-driven learning (YF, RM, OB, ID), pp. 420–435.
SASSAS-2018-PrabhuMV #behaviour #proving #safety
Efficiently Learning Safety Proofs from Appearance as well as Behaviours (SP, KM, RV), pp. 326–343.
ASEASE-2018-ChaLO #online #testing
Template-guided concolic testing via online learning (SC, SL, HO), pp. 408–418.
ASEASE-2018-GaoYFJS #named #platform #semantics
VulSeeker: a semantic learning based vulnerability seeker for cross-platform binary (JG, XY, YF, YJ0, JS), pp. 896–899.
ASEASE-2018-HabibP #documentation #graph #thread #using
Is this class thread-safe? inferring documentation using graph-based learning (AH, MP), pp. 41–52.
ASEASE-2018-HanYL #debugging #named #performance
PerfLearner: learning from bug reports to understand and generate performance test frames (XH, TY, DL0), pp. 17–28.
ASEASE-2018-LiuXZ #detection
Deep learning based feature envy detection (HL, ZX, YZ), pp. 385–396.
ASEASE-2018-MaJZSXLCSLLZW #multi #named #testing
DeepGauge: multi-granularity testing criteria for deep learning systems (LM0, FJX, FZ, JS, MX, BL0, CC, TS, LL0, YL0, JZ, YW), pp. 120–131.
ASEASE-2018-TufanoWBPWP #empirical
An empirical investigation into learning bug-fixing patches in the wild via neural machine translation (MT, CW, GB, MDP, MW, DP), pp. 832–837.
ASEASE-2018-WanZYXY0Y #automation #source code #summary
Improving automatic source code summarization via deep reinforcement learning (YW, ZZ, MY0, GX, HY, JW0, PSY), pp. 397–407.
ESEC-FSEESEC-FSE-2018-GaoYFJSS #named #semantics
VulSeeker-pro: enhanced semantic learning based binary vulnerability seeker with emulation (JG, XY, YF, YJ0, HS, JS), pp. 803–808.
ESEC-FSEESEC-FSE-2018-GuoJZCS #difference #fuzzing #named #testing
DLFuzz: differential fuzzing testing of deep learning systems (JG, YJ0, YZ, QC, JS), pp. 739–743.
ESEC-FSEESEC-FSE-2018-HellendoornBBA #type inference
Deep learning type inference (VJH, CB, ETB, MA), pp. 152–162.
ESEC-FSEESEC-FSE-2018-JamshidiVKS #configuration management #modelling #performance
Learning to sample: exploiting similarities across environments to learn performance models for configurable systems (PJ, MV, CK, NS), pp. 71–82.
ESEC-FSEESEC-FSE-2018-Meijer #concept #framework #programming language
Behind every great deep learning framework is an even greater programming languages concept (keynote) (EM0), p. 1.
ESEC-FSEESEC-FSE-2018-ZhaoH #functional #named #similarity
DeepSim: deep learning code functional similarity (GZ, JH0), pp. 141–151.
ICSE-2018-PhanNTTNN #api #online #statistics
Statistical learning of API fully qualified names in code snippets of online forums (HP, HAN, NMT, LHT, ATN0, TNN), pp. 632–642.
ASPLOSASPLOS-2018-MishraILH #energy #latency #named #predict
CALOREE: Learning Control for Predictable Latency and Low Energy (NM, CI, JDL, HH), pp. 184–198.
CASECASE-2018-BanerjeeRP #towards
A Step Toward Learning to Control Tens of Optically Actuated Microrobots in Three Dimensions (AGB, KR, BP), pp. 1460–1465.
CASECASE-2018-ChuBIICS #multi #online #power management #using
Plug-and-Play Power Management Control of All-Electric Vehicles Using Multi-Agent System and On-line Gaussian Learning (KCC, GB, MI, AI, CC, KS), pp. 1599–1604.
CASECASE-2018-FarooquiFF #automation #modelling #simulation #towards
Towards Automatic Learning of Discrete-Event Models from Simulations (AF, PF, MF), pp. 857–862.
CASECASE-2018-HuaH #concept #induction #logic programming #semantics
Concept Learning in AutomationML with Formal Semantics and Inductive Logic Programming (YH, BH), pp. 1542–1547.
CASECASE-2018-JiKPFG #2d
Learning 2D Surgical Camera Motion From Demonstrations (JJJ, SK, VP, DF, KG), pp. 35–42.
CASECASE-2018-LeeLFG #constraints #estimation
Constraint Estimation and Derivative-Free Recovery for Robot Learning from Demonstrations (JL, ML, RF, KG), pp. 270–277.
CASECASE-2018-NagahamaTYYYI
A Learning Method for a Daily Assistive Robot for Opening and Closing Doors Based on Simple Instructions (KN, KT, HY, KY, TY, MI), pp. 599–605.
CASECASE-2018-NeumannNKM #classification
Material Classification through Knocking and Grasping by Learning of Structure-Borne Sound under Changing Acoustic Conditions (MN, KN, IK, ZCM), pp. 1269–1275.
CASECASE-2018-ParkHGS #process
Robot Model Learning with Gaussian Process Mixture Model (SP, YH, CFG, KS), pp. 1263–1268.
CASECASE-2018-RenWLG #behaviour #online #video
Learning Traffic Behaviors by Extracting Vehicle Trajectories from Online Video Streams (XR, DW, ML, KG), pp. 1276–1283.
CASECASE-2018-SeichterESG #detection #how
How to Improve Deep Learning based Pavement Distress Detection while Minimizing Human Effort (DS, ME0, RS, HMG), pp. 63–70.
CASECASE-2018-TanCPP #analysis #automation #design #visual notation
Transfer Learning with PipNet: For Automated Visual Analysis of Piping Design (WCT, IMC, DP, SJP), pp. 1296–1301.
CASECASE-2018-TanGCC #analysis #automation
Learning with Corrosion Feature: For Automated Quantitative Risk Analysis of Corrosion Mechanism (WCT, PCG, KHC, IMC), pp. 1290–1295.
CASECASE-2018-TsengWCMSVVCOG #automation #image #precise #towards
Towards Automating Precision Irrigation: Deep Learning to Infer Local Soil Moisture Conditions from Synthetic Aerial Agricultural Images (DT, DWLW, CC, LM, WS, JV, SV, SC, JAO, KG), pp. 284–291.
CASECASE-2018-WangKZY #concept #data type #detection #multi
A Multiscale Concept Drift Detection Method for Learning from Data Streams (XW, QK, MZ, SY), pp. 786–790.
CASECASE-2018-YangZCTK
Intelligent Diagnosis of Forging Die based on Deep Learning (HCY, CHZ, YZC, CMT, YCK), pp. 199–204.
ESOPESOP-2018-MertenBS #algorithm #complexity #distributed #game studies
Verified Learning Without Regret - From Algorithmic Game Theory to Distributed Systems with Mechanized Complexity Guarantees (SM, AB, GS0), pp. 561–588.
CAVCAV-2018-DreossiJS #semantics
Semantic Adversarial Deep Learning (TD, SJ, SAS), pp. 3–26.
CAVCAV-2018-KelmendiKKW #algorithm #game studies #probability
Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning Algorithm (EK, JK, JK, MW), pp. 623–642.
CAVCAV-2018-SinghPV #performance #program analysis
Fast Numerical Program Analysis with Reinforcement Learning (GS, MP, MTV), pp. 211–229.
CAVCAV-2018-WangADM #abstraction #synthesis
Learning Abstractions for Program Synthesis (XW0, GA, ID, KLM), pp. 407–426.
CAVCAV-2018-ZhouL
Safety-Aware Apprenticeship Learning (WZ, WL), pp. 662–680.
ICTSSICTSS-2018-SalvaBL #component #data analysis #modelling
Combining Model Learning and Data Analysis to Generate Models of Component-Based Systems (SS, EB, PL), pp. 142–148.
IJCARIJCAR-2018-PiotrowskiU #feedback #named
ATPboost: Learning Premise Selection in Binary Setting with ATP Feedback (BP, JU), pp. 566–574.
VMCAIVMCAI-2018-LiTZS #automaton
Learning to Complement Büchi Automata (YL0, AT, LZ0, SS), pp. 313–335.
JCDLJCDL-2017-WeihsE #metric #predict
Learning to Predict Citation-Based Impact Measures (LW, OE), pp. 49–58.
JCDLJCDL-2017-YangHHOZKG #identification #library #using
Smart Library: Identifying Books on Library Shelves Using Supervised Deep Learning for Scene Text Reading (XY, DH, WH, AO, ZZ, DK, CLG), pp. 245–248.
CSEETCSEET-2017-BinderNRM #challenge #development #education #mobile
Challenge Based Learning Applied to Mobile Software Development Teaching (FVB, MN, SSR, AM), pp. 57–64.
CSEETCSEET-2017-LeildeR #assessment #process
Does Process Assessment Drive Process Learning? The Case of a Bachelor Capstone Project (VL, VR), pp. 197–201.
EDMEDM-2017-AgrawalNM #student
Grouping Students for Maximizing Learning from Peers (RA, SN, NMM).
EDMEDM-2017-BaoCH #multi #on the #online
On the Prevalence of Multiple-Account Cheating in Massive Open Online Learning (YB, GC, CH).
EDMEDM-2017-BeckCB #data mining #education #mining
Workshop proposal: deep learning for educational data mining (JB, MC, RSB).
EDMEDM-2017-CaiEDPGS #analysis #chat #collaboration #modelling #network #topic
Epistemic Network Analysis and Topic Modeling for Chat Data from Collaborative Learning Environment (ZC, BRE, ND, JWP, ACG, DWS).
EDMEDM-2017-DongB #behaviour #modelling #student
An Extended Learner Modeling Method to Assess Students' Learning Behaviors (YD, GB).
EDMEDM-2017-EkambaramMDKSN #physics
Tell Me More: Digital Eyes to the Physical World for Early Childhood Learning (VE, RSM, PD, RK, AKS, SVN).
EDMEDM-2017-FangNPXGH #online #persistent
Online Learning Persistence and Academic Achievement (YF, BN, PIPJ, YX, ACG, XH).
EDMEDM-2017-GrawemeyerWSHMP #graph #modelling #student #using
Using Graph-based Modelling to explore changes in students' affective states during exploratory learning tasks (BG, AW, SGS, WH, MM, AP).
EDMEDM-2017-HongB #predict #using
A Prediction and Early Alert Model Using Learning Management System Data and Grounded in Learning Science Theory (WJH, MLB).
EDMEDM-2017-LalleCATM #on the #self #student
On the Influence on Learning of Student Compliance with Prompts Fostering Self-Regulated Learning (SL, CC, RA, MT, NM).
EDMEDM-2017-LiuK #automation #data-driven
Closing the loop: Automated data-driven cognitive model discoveries lead to improved instruction and learning (RL0, KRK).
EDMEDM-2017-MaM #composition
Intelligent Composition of Test Papers based on MOOC Learning Data (LM, YM).
EDMEDM-2017-NamFC #predict #semantics #word
Predicting Short- and Long-Term Vocabulary Learning via Semantic Features of Partial Word Knowledge (SN, GAF, KCT).
EDMEDM-2017-RomeroEGGM #automation #classification #towards
Towards Automatic Classification of Learning Objects: Reducing the Number of Used Features (CR, PGE, EG, AZG, VHM).
EDMEDM-2017-ShiPG #analysis #performance #using
Using an Additive Factor Model and Performance Factor Analysis to Assess Learning Gains in a Tutoring System to Help Adults with Reading Difficulties (GS, PIPJ, ACG).
EDMEDM-2017-SuprajaHTK #automation #towards
Toward the Automatic Labeling of Course Questions for Ensuring their Alignment with Learning Outcomes (SS, KH, ST, AWHK).
EDMEDM-2017-ThanasuanCW #mining #student
Emerging Patterns in Student's Learning Attributes through Text Mining (KT, WC, CW).
EDMEDM-2017-WangSLP #programming #student #using
Learning to Represent Student Knowledge on Programming Exercises Using Deep Learning (LW, AS, LL, CP).
EDMEDM-2017-WatersGLB
Short-Answer Responses to STEM Exercises: Measuring Response Validity and Its Impact on Learning (AEW, PG, ASL, RGB).
EDMEDM-2017-XieMSEBH #adaptation #online #predict #student
Student Learning Strategies to Predict Success in an Online Adaptive Mathematics Tutoring System (JX, SM, KTS, AE, RSB, XH).
EDMEDM-2017-ZhouWLC #policy #towards
Towards Closing the Loop: Bridging Machine-induced Pedagogical Policies to Learning Theories (GZ, JW, CL, MC).
ICPCICPC-2017-LamNNN #debugging #information retrieval #locality
Bug localization with combination of deep learning and information retrieval (ANL, ATN0, HAN, TNN), pp. 218–229.
ICSMEICSME-2017-DeshmukhMPSD #debugging #retrieval #towards #using
Towards Accurate Duplicate Bug Retrieval Using Deep Learning Techniques (JD, KMA, SP, SS, ND), pp. 115–124.
ICSMEICSME-2017-HanLXLF #predict #using
Learning to Predict Severity of Software Vulnerability Using Only Vulnerability Description (ZH, XL0, ZX, HL, ZF0), pp. 125–136.
ICSMEICSME-2017-LiJZZ #fault #kernel #multi #predict
Heterogeneous Defect Prediction Through Multiple Kernel Learning and Ensemble Learning (ZL0, XYJ, XZ, HZ0), pp. 91–102.
ICSMEICSME-2017-VerwerH #automaton #named
flexfringe: A Passive Automaton Learning Package (SV, CAH), pp. 638–642.
ICSMEICSME-2017-WiemanALVD #case study #experience #scalability
An Experience Report on Applying Passive Learning in a Large-Scale Payment Company (RW, MFA, WL, SV, AvD), pp. 564–573.
SANERSANER-2017-GoerFM #execution #named
scat: Learning from a single execution of a binary (FdG, CF, LM), pp. 492–496.
SANERSANER-2017-SharmaTSLY #developer #twitter
Harnessing Twitter to support serendipitous learning of developers (AS0, YT0, AS, DL0, AFY), pp. 387–391.
IFM-2017-SilvettiPB #approach #black box #cyber-physical
An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems (SS, AP, LB), pp. 3–17.
SEFMSEFM-2017-CabodiCPPV #bound #model checking
Interpolation-Based Learning as a Mean to Speed-Up Bounded Model Checking (Short Paper) (GC, PC, MP, PP, DV), pp. 382–387.
AIIDEAIIDE-2017-BarrigaSB #game studies #realtime
Combining Strategic Learning with Tactical Search in Real-Time Strategy Games (NAB, MS, MB), pp. 9–15.
AIIDEAIIDE-2017-CampbellV
Learning Combat in NetHack (JC, CV), pp. 16–22.
AIIDEAIIDE-2017-SigurdsonB #algorithm #heuristic #realtime
Deep Learning for Real-Time Heuristic Search Algorithm Selection (DS, VB), pp. 108–114.
CHI-PLAYCHI-PLAY-2017-ArroyoMCOHR #game studies #multi #smarttech
Wearable Learning: Multiplayer Embodied Games for Math (IA, MM, JC, EO, TH, MMTR), pp. 205–216.
CHI-PLAYCHI-PLAY-2017-JohansonGM #3d #game studies #navigation #performance
The Effects of Navigation Assistance on Spatial Learning and Performance in a 3D Game (CJ, CG, RLM), pp. 341–353.
CHI-PLAYCHI-PLAY-2017-ScozziIL #approach #design #game studies
A Mixed Method Approach for Evaluating and Improving the Design of Learning in Puzzle Games (MVS, II, CL), pp. 217–228.
CoGCIG-2017-IlhanE #game studies #monte carlo #video
Monte Carlo tree search with temporal-difference learning for general video game playing (EI, ASEU), pp. 317–324.
CoGCIG-2017-JustesenR #using
Learning macromanagement in starcraft from replays using deep learning (NJ, SR), pp. 162–169.
CoGCIG-2017-MinK #game studies #using #visual notation
Learning to play visual doom using model-free episodic control (BJM, KJK), pp. 223–225.
CoGCIG-2017-NguyenRGM #automation #network
Automated learning of hierarchical task networks for controlling minecraft agents (CN, NR, SG, HMA), pp. 226–231.
CoGCIG-2017-OonishiI #game studies #using
Improving generalization ability in a puzzle game using reinforcement learning (HO, HI), pp. 232–239.
CoGCIG-2017-OsbornSM #automation #design #game studies
Automated game design learning (JCO, AS, MM), pp. 240–247.
CoGCIG-2017-PhucNK #behaviour #statistics #using
Learning human-like behaviors using neuroevolution with statistical penalties (LHP, KN, KI), pp. 207–214.
CoGCIG-2017-PoulsenTFR #named #visual notation
DLNE: A hybridization of deep learning and neuroevolution for visual control (APP, MT, MHF, SR), pp. 256–263.
CoGCIG-2017-ZhangB #policy
Improving hearthstone AI by learning high-level rollout policies and bucketing chance node events (SZ, MB), pp. 309–316.
DiGRADiGRA-2017-Loban #game studies #video
Digitising Diplomacy: Grand Strategy Video Games as an Introductory Tool for Learning Diplomacy and International Relations (RL).
DiGRADiGRA-2017-TyackW #adaptation #design #game studies
Adapting Epic Theatre Principles for the Design of Games for Learning (AT, PW).
FDGFDG-2017-BauerBP #architecture #design #game studies #problem
Dragon architect: open design problems for guided learning in a creative computational thinking sandbox game (AB0, EB, ZP), p. 6.
FDGFDG-2017-KaravolosLY #game studies #multi
Learning the patterns of balance in a multi-player shooter game (DK, AL, GNY), p. 10.
FDGFDG-2017-LaffeyGSLSGKWW #game studies
Mission HydroSci: a progress report on a transformational role playing game for science learning (JML, JG, JS, SL, TDS, SPG, SMK, EW, AJW), p. 4.
FDGFDG-2017-Valls-VargasZO #game studies #generative #grammarware #graph grammar #parallel #programming
Graph grammar-based controllable generation of puzzles for a learning game about parallel programming (JVV, JZ, SO), p. 10.
ICGJICGJ-2017-PollockMY #development #game studies
Brain jam: STEAM learning through neuroscience-themed game development (IP, JM, BY), pp. 15–21.
CoGVS-Games-2017-BlomeDRBM #artificial reality
VReanimate - Non-verbal guidance and learning in virtual reality (TB, AD, SR, KB, SvM), pp. 23–30.
CoGVS-Games-2017-CobelloBMZ #aspect-oriented #community #education #experience #gamification #social
The value of establishing a community of teachers for the gamification of prosocial learning: Pegadogical, social and developmental aspects of a teachers' community space experience (SC, PPB, EM, NZ), pp. 189–192.
CoGVS-Games-2017-MullerPGLJ #case study
Learning mechanical engineering in a virtual workshop: A preliminary study on utilisability, utility and acceptability (NM, DP, MG, PL, JPJ), pp. 55–62.
CoGVS-Games-2017-PanzoliCPDOBLBG #biology #game studies
Learning the cell cycle with a game: Virtual experiments in cell biology (DP, SCB, JP, JD, MO, LB, VL, EB, FG, CPL, BD, YD), pp. 47–54.
CoGVS-Games-2017-TsatsouVD #adaptation #case study #experience #modelling #multi
Modelling learning experiences in adaptive multi-agent learning environments (DT, NV, PD), pp. 193–200.
CIKMCIKM-2017-0001KGR #constraints #named
TaCLe: Learning Constraints in Tabular Data (SP0, SK, TG, LDR), pp. 2511–2514.
CIKMCIKM-2017-0002L #representation
Region Representation Learning via Mobility Flow (HW0, ZL), pp. 237–246.
CIKMCIKM-2017-Abu-El-HaijaPA #rank #symmetry
Learning Edge Representations via Low-Rank Asymmetric Projections (SAEH, BP, RAR), pp. 1787–1796.
CIKMCIKM-2017-BiegaGFGW #community #online
Learning to Un-Rank: Quantifying Search Exposure for Users in Online Communities (AJB, AG, HF, KPG, GW), pp. 267–276.
CIKMCIKM-2017-BouadjenekVZ #biology #sequence #using
Learning Biological Sequence Types Using the Literature (MRB, KV, JZ), pp. 1991–1994.
CIKMCIKM-2017-CavallariZCCC #community #detection #graph
Learning Community Embedding with Community Detection and Node Embedding on Graphs (SC, VWZ, HC, KCCC, EC), pp. 377–386.
CIKMCIKM-2017-ChaiLTS #multi
Compact Multiple-Instance Learning (JC, WL0, IWT, XBS), pp. 2007–2010.
CIKMCIKM-2017-ChenDWXCCM #detection #spreadsheet
Spreadsheet Property Detection With Rule-assisted Active Learning (ZC, SD, RW, GX, DC, MJC, JDM), pp. 999–1008.
CIKMCIKM-2017-DangCWZC #classification #kernel
Unsupervised Matrix-valued Kernel Learning For One Class Classification (SD, XC, YW0, JZ, FC0), pp. 2031–2034.
CIKMCIKM-2017-DehghaniRAF #query
Learning to Attend, Copy, and Generate for Session-Based Query Suggestion (MD0, SR, EA, PF), pp. 1747–1756.
CIKMCIKM-2017-EnsanBZK #empirical #rank
An Empirical Study of Embedding Features in Learning to Rank (FE, EB, AZ, AK), pp. 2059–2062.
CIKMCIKM-2017-FanGLXPC #visual notation #web
Learning Visual Features from Snapshots for Web Search (YF, JG, YL, JX0, LP, XC), pp. 247–256.
CIKMCIKM-2017-FuLL #named #network #representation
HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning (TYF, WCL, ZL), pp. 1797–1806.
CIKMCIKM-2017-HuangPLLMC #predict
An Ad CTR Prediction Method Based on Feature Learning of Deep and Shallow Layers (ZH, ZP, QL0, BL, HM, EC), pp. 2119–2122.
CIKMCIKM-2017-LeiLLZ #personalisation #ranking
Alternating Pointwise-Pairwise Learning for Personalized Item Ranking (YL, WL0, ZL, MZ), pp. 2155–2158.
CIKMCIKM-2017-LiCY #graph #recommendation
Learning Graph-based Embedding For Time-Aware Product Recommendation (YL, WC, HY), pp. 2163–2166.
CIKMCIKM-2017-LiDHTCL #network
Attributed Network Embedding for Learning in a Dynamic Environment (JL, HD, XH, JT, YC, HL0), pp. 387–396.
CIKMCIKM-2017-LiTZYW #recommendation #representation
Content Recommendation by Noise Contrastive Transfer Learning of Feature Representation (YL, GT, WZ0, YY0, JW0), pp. 1657–1665.
CIKMCIKM-2017-Liu0MLLM
A Two-step Information Accumulation Strategy for Learning from Highly Imbalanced Data (BL, MZ0, WM, XL0, YL, SM), pp. 1289–1298.
CIKMCIKM-2017-LyuHLP #collaboration #privacy #process #recognition
Privacy-Preserving Collaborative Deep Learning with Application to Human Activity Recognition (LL, XH, YWL, MP), pp. 1219–1228.
CIKMCIKM-2017-MansouriZRO0 #ambiguity #query #web
Learning Temporal Ambiguity in Web Search Queries (BM, MSZ, MR, FO, RC0), pp. 2191–2194.
CIKMCIKM-2017-MehrotraY #query #using
Task Embeddings: Learning Query Embeddings using Task Context (RM, EY), pp. 2199–2202.
CIKMCIKM-2017-Moon0S #graph
Learning Entity Type Embeddings for Knowledge Graph Completion (CM, PJ0, NFS), pp. 2215–2218.
CIKMCIKM-2017-Ni0ZYM #fine-grained #metric #similarity #using
Fine-grained Patient Similarity Measuring using Deep Metric Learning (JN, JL0, CZ, DY, ZM), pp. 1189–1198.
CIKMCIKM-2017-OosterhuisR17a #information retrieval #online #quality #rank
Balancing Speed and Quality in Online Learning to Rank for Information Retrieval (HO, MdR), pp. 277–286.
CIKMCIKM-2017-PangXCZ #category theory #detection
Selective Value Coupling Learning for Detecting Outliers in High-Dimensional Categorical Data (GP, HX, LC, WZ), pp. 807–816.
CIKMCIKM-2017-QianPS #scalability
Active Learning for Large-Scale Entity Resolution (KQ0, LP0, PS), pp. 1379–1388.
CIKMCIKM-2017-QuTSR00 #collaboration #framework #multi #network #representation
An Attention-based Collaboration Framework for Multi-View Network Representation Learning (MQ, JT0, JS, XR, MZ0, JH0), pp. 1767–1776.
CIKMCIKM-2017-SahaJHH #modelling #representation
Regularized and Retrofitted models for Learning Sentence Representation with Context (TKS, SRJ, NH, MAH), pp. 547–556.
CIKMCIKM-2017-ShiPW #modelling #student
Modeling Student Learning Styles in MOOCs (YS, ZP, HW), pp. 979–988.
CIKMCIKM-2017-TanZW #graph #representation #scalability
Representation Learning of Large-Scale Knowledge Graphs via Entity Feature Combinations (ZT, XZ0, WW0), pp. 1777–1786.
CIKMCIKM-2017-TengLW #detection #multi #network #using
Anomaly Detection in Dynamic Networks using Multi-view Time-Series Hypersphere Learning (XT, YRL, XW), pp. 827–836.
CIKMCIKM-2017-XiangJ #multimodal #network
Common-Specific Multimodal Learning for Deep Belief Network (CX, XJ), pp. 2387–2390.
CIKMCIKM-2017-XiaoMZLM #personalisation #recommendation #social
Learning and Transferring Social and Item Visibilities for Personalized Recommendation (XL0, MZ0, YZ, YL, SM), pp. 337–346.
CIKMCIKM-2017-XuLLX #rank
Learning to Rank with Query-level Semi-supervised Autoencoders (BX0, HL, YL0, KX), pp. 2395–2398.
CIKMCIKM-2017-Yang
When Deep Learning Meets Transfer Learning (QY), p. 5.
CIKMCIKM-2017-ZhangACC #recommendation #representation
Joint Representation Learning for Top-N Recommendation with Heterogeneous Information Sources (YZ, QA, XC, WBC), pp. 1449–1458.
CIKMCIKM-2017-ZhangCYL #community #detection #enterprise #named
BL-ECD: Broad Learning based Enterprise Community Detection via Hierarchical Structure Fusion (JZ, LC, PSY, YL), pp. 859–868.
CIKMCIKM-2017-ZhangXKZ #graph #interactive
Learning Node Embeddings in Interaction Graphs (YZ, YX, XK, YZ), pp. 397–406.
CIKMCIKM-2017-ZhaoWLL
Missing Value Learning (ZLZ, CDW, KYL, JHL), pp. 2427–2430.
CIKMCIKM-2017-ZhaoXYYZFQ #image
Dual Learning for Cross-domain Image Captioning (WZ, WX, MY0, JY, ZZ, YF, YQ), pp. 29–38.
CIKMCIKM-2017-ZhouZL0
Learning Knowledge Embeddings by Combining Limit-based Scoring Loss (XZ, QZ, PL, LG0), pp. 1009–1018.
CIKMCIKM-2017-ZhuZHWZZY #collaboration #multi #recommendation
Broad Learning based Multi-Source Collaborative Recommendation (JZ, JZ, LH0, QW, BZ0, CZ, PSY), pp. 1409–1418.
CIKMCIKM-2017-ZohrevandGTSSS #framework
Deep Learning Based Forecasting of Critical Infrastructure Data (ZZ, UG, MAT, HYS, MS, AYS), pp. 1129–1138.
ECIRECIR-2017-AlkhawaldehPJY #clustering #information retrieval #named #query
LTRo: Learning to Route Queries in Clustered P2P IR (RSA, DP0, JMJ, FY), pp. 513–519.
ECIRECIR-2017-AyadiKHDJ #image #using
Learning to Re-rank Medical Images Using a Bayesian Network-Based Thesaurus (HA, MTK, JXH, MD, MBJ), pp. 160–172.
ECIRECIR-2017-GuptaS
Learning to Classify Inappropriate Query-Completions (PG, JS), pp. 548–554.
ECIRECIR-2017-RomeoMBM #approach #multi #ranking
A Multiple-Instance Learning Approach to Sentence Selection for Question Ranking (SR, GDSM, ABC, AM), pp. 437–449.
ECIRECIR-2017-SoldainiG #approach #health #rank #semantics
Learning to Rank for Consumer Health Search: A Semantic Approach (LS, NG), pp. 640–646.
ICMLICML-2017-0001N #composition #modelling #scalability
Relative Fisher Information and Natural Gradient for Learning Large Modular Models (KS0, FN), pp. 3289–3298.
ICMLICML-2017-0004K
Follow the Moving Leader in Deep Learning (SZ0, JTK), pp. 4110–4119.
ICMLICML-2017-0007MW #effectiveness
Collect at Once, Use Effectively: Making Non-interactive Locally Private Learning Possible (KZ0, WM, LW0), pp. 4130–4139.
ICMLICML-2017-AgarwalS #difference #online #privacy
The Price of Differential Privacy for Online Learning (NA, KS), pp. 32–40.
ICMLICML-2017-AlaaHS #process
Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis (AMA, SH, MvdS), pp. 60–69.
ICMLICML-2017-AllamanisCKS #semantics
Learning Continuous Semantic Representations of Symbolic Expressions (MA, PC, PK, CAS), pp. 80–88.
ICMLICML-2017-Allen-ZhuL17b #online #performance
Follow the Compressed Leader: Faster Online Learning of Eigenvectors and Faster MMWU (ZAZ, YL), pp. 116–125.
ICMLICML-2017-AndreasKL #composition #multi #policy #sketching
Modular Multitask Reinforcement Learning with Policy Sketches (JA, DK, SL), pp. 166–175.
ICMLICML-2017-AnschelBS #named #reduction
Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement Learning (OA, NB, NS), pp. 176–185.
ICMLICML-2017-AsadiL
An Alternative Softmax Operator for Reinforcement Learning (KA, MLL), pp. 243–252.
ICMLICML-2017-AzarOM #bound
Minimax Regret Bounds for Reinforcement Learning (MGA, IO, RM), pp. 263–272.
ICMLICML-2017-BachHRR #generative #modelling
Learning the Structure of Generative Models without Labeled Data (SHB, BDH, AR, CR), pp. 273–282.
ICMLICML-2017-BachmanST #algorithm
Learning Algorithms for Active Learning (PB, AS, AT), pp. 301–310.
ICMLICML-2017-BalleM #finite #policy
Spectral Learning from a Single Trajectory under Finite-State Policies (BB, OAM), pp. 361–370.
ICMLICML-2017-BaramACM
End-to-End Differentiable Adversarial Imitation Learning (NB, OA, IC, SM), pp. 390–399.
ICMLICML-2017-BarmannPS #online #optimisation
Emulating the Expert: Inverse Optimization through Online Learning (AB, SP, OS), pp. 400–410.
ICMLICML-2017-BelangerYM #energy #network #predict
End-to-End Learning for Structured Prediction Energy Networks (DB, BY, AM), pp. 429–439.
ICMLICML-2017-BelilovskyKVB #modelling #visual notation
Learning to Discover Sparse Graphical Models (EB, KK, GV, MBB), pp. 440–448.
ICMLICML-2017-BellemareDM
A Distributional Perspective on Reinforcement Learning (MGB, WD, RM), pp. 449–458.
ICMLICML-2017-BelloZVL
Neural Optimizer Search with Reinforcement Learning (IB, BZ, VV, QVL), pp. 459–468.
ICMLICML-2017-BergmannJV
Learning Texture Manifolds with the Periodic Spatial GAN (UB, NJ, RV), pp. 469–477.
ICMLICML-2017-BernsteinMSSHM #modelling #using #visual notation
Differentially Private Learning of Undirected Graphical Models Using Collective Graphical Models (GB, RM, TS, DS, MH, GM), pp. 478–487.
ICMLICML-2017-BeygelzimerOZ #multi #online #performance
Efficient Online Bandit Multiclass Learning with Õ(√T) Regret (AB, FO, CZ), pp. 488–497.
ICMLICML-2017-BojanowskiJ #predict
Unsupervised Learning by Predicting Noise (PB, AJ), pp. 517–526.
ICMLICML-2017-BotevRB #optimisation
Practical Gauss-Newton Optimisation for Deep Learning (AB, HR, DB), pp. 557–565.
ICMLICML-2017-ChebotarHZSSL #modelling
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning (YC, KH, MZ, GSS, SS, SL), pp. 703–711.
ICMLICML-2017-ChenHCDLBF
Learning to Learn without Gradient Descent by Gradient Descent (YC, MWH, SGC, MD, TPL, MB, NdF), pp. 748–756.
ICMLICML-2017-ChenZLHH
Learning to Aggregate Ordinal Labels by Maximizing Separating Width (GC, SZ, DL, HH0, PAH), pp. 787–796.
ICMLICML-2017-ChouMS #policy #probability #using
Improving Stochastic Policy Gradients in Continuous Control with Deep Reinforcement Learning using the Beta Distribution (PWC, DM, SAS), pp. 834–843.
ICMLICML-2017-CortesGKMY #adaptation #named #network
AdaNet: Adaptive Structural Learning of Artificial Neural Networks (CC, XG, VK, MM, SY), pp. 874–883.
ICMLICML-2017-DevlinUBSMK #named
RobustFill: Neural Program Learning under Noisy I/O (JD, JU, SB, RS, ArM, PK), pp. 990–998.
ICMLICML-2017-FoersterNFATKW #experience #multi
Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning (JNF, NN, GF, TA, PHST, PK, SW), pp. 1146–1155.
ICMLICML-2017-FutomaHH #classification #detection #multi #process
Learning to Detect Sepsis with a Multitask Gaussian Process RNN Classifier (JF, SH, KAH), pp. 1174–1182.
ICMLICML-2017-GalIG #image
Deep Bayesian Active Learning with Image Data (YG, RI, ZG), pp. 1183–1192.
ICMLICML-2017-GaoFC #network
Local-to-Global Bayesian Network Structure Learning (TG, KPF, MC), pp. 1193–1202.
ICMLICML-2017-GehringAGYD #sequence
Convolutional Sequence to Sequence Learning (JG, MA, DG, DY, YND), pp. 1243–1252.
ICMLICML-2017-GravesBMMK #automation #education #network
Automated Curriculum Learning for Neural Networks (AG, MGB, JM, RM, KK), pp. 1311–1320.
ICMLICML-2017-HaarnojaTAL #energy #policy
Reinforcement Learning with Deep Energy-Based Policies (TH, HT, PA, SL), pp. 1352–1361.
ICMLICML-2017-HarandiSH #geometry #metric #reduction
Joint Dimensionality Reduction and Metric Learning: A Geometric Take (MTH, MS, RIH), pp. 1404–1413.
ICMLICML-2017-HigginsPRMBPBBL #named
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning (IH, AP, AAR, LM, CB, AP, MB, CB, AL), pp. 1480–1490.
ICMLICML-2017-Hoffman #markov #modelling #monte carlo
Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo (MDH), pp. 1510–1519.
ICMLICML-2017-HongHZ #algorithm #distributed #named #network #optimisation #performance
Prox-PDA: The Proximal Primal-Dual Algorithm for Fast Distributed Nonconvex Optimization and Learning Over Networks (MH, DH, MMZ), pp. 1529–1538.
ICMLICML-2017-HuMTMS #self
Learning Discrete Representations via Information Maximizing Self-Augmented Training (WH, TM, ST, EM, MS), pp. 1558–1567.
ICMLICML-2017-JabbariJKMR
Fairness in Reinforcement Learning (SJ, MJ, MJK, JM, AR0), pp. 1617–1626.
ICMLICML-2017-JainMR #generative #modelling #multi #scalability
Scalable Generative Models for Multi-label Learning with Missing Labels (VJ, NM, PR), pp. 1636–1644.
ICMLICML-2017-JerniteCS #classification #estimation
Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation (YJ, AC, DAS), pp. 1665–1674.
ICMLICML-2017-KattOA #monte carlo
Learning in POMDPs with Monte Carlo Tree Search (SK, FAO, CA), pp. 1819–1827.
ICMLICML-2017-KhasanovaF #graph #invariant #representation
Graph-based Isometry Invariant Representation Learning (RK, PF), pp. 1847–1856.
ICMLICML-2017-KimCKLK #generative #network
Learning to Discover Cross-Domain Relations with Generative Adversarial Networks (TK, MC, HK, JKL, JK), pp. 1857–1865.
ICMLICML-2017-KimPKH #named #network #parallel #parametricity #reduction #semantics
SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization (JK, YP, GK, SJH), pp. 1866–1874.
ICMLICML-2017-KocaogluDV #graph
Cost-Optimal Learning of Causal Graphs (MK, AD, SV), pp. 1875–1884.
ICMLICML-2017-KrishnamurthyAH #classification
Active Learning for Cost-Sensitive Classification (AK, AA, TKH, HDI, JL0), pp. 1915–1924.
ICMLICML-2017-LawUZ #clustering
Deep Spectral Clustering Learning (MTL, RU, RSZ), pp. 1985–1994.
ICMLICML-2017-LeeHPS #multi
Confident Multiple Choice Learning (KL, CH, KP, JS), pp. 2014–2023.
ICMLICML-2017-LevyW #source code
Learning to Align the Source Code to the Compiled Object Code (DL, LW), pp. 2043–2051.
ICMLICML-2017-LeY0L #coordination #multi
Coordinated Multi-Agent Imitation Learning (HML0, YY, PC0, PL), pp. 1995–2003.
ICMLICML-2017-LivniCG #infinity #kernel #network
Learning Infinite Layer Networks Without the Kernel Trick (RL, DC, AG), pp. 2198–2207.
ICMLICML-2017-LongZ0J #adaptation #network
Deep Transfer Learning with Joint Adaptation Networks (ML, HZ, JW0, MIJ), pp. 2208–2217.
ICMLICML-2017-Luo #architecture #network
Learning Deep Architectures via Generalized Whitened Neural Networks (PL0), pp. 2238–2246.
ICMLICML-2017-LvJL
Learning Gradient Descent: Better Generalization and Longer Horizons (KL, SJ, JL), pp. 2247–2255.
ICMLICML-2017-MacGlashanHLPWR #feedback #interactive
Interactive Learning from Policy-Dependent Human Feedback (JM, MKH, RTL, BP, GW, DLR, MET, MLL), pp. 2285–2294.
ICMLICML-2017-MachadoBB #framework
A Laplacian Framework for Option Discovery in Reinforcement Learning (MCM, MGB, MHB), pp. 2295–2304.
ICMLICML-2017-MaystreG #approach #effectiveness #exclamation
Just Sort It! A Simple and Effective Approach to Active Preference Learning (LM, MG), pp. 2344–2353.
ICMLICML-2017-MirhoseiniPLSLZ #optimisation
Device Placement Optimization with Reinforcement Learning (AM, HP, QVL, BS, RL0, YZ, NK, MN0, SB, JD), pp. 2430–2439.
ICMLICML-2017-MohajerSE #rank
Active Learning for Top-K Rank Aggregation from Noisy Comparisons (SM, CS, AE), pp. 2488–2497.
ICMLICML-2017-OhSLK #multi
Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning (JO, SPS, HL, PK), pp. 2661–2670.
ICMLICML-2017-OmidshafieiPAHV #distributed #multi
Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability (SO, JP, CA, JPH, JV), pp. 2681–2690.
ICMLICML-2017-OsbandR #question #why
Why is Posterior Sampling Better than Optimism for Reinforcement Learning? (IO, BVR), pp. 2701–2710.
ICMLICML-2017-OsogamiKS #bidirectional #modelling
Bidirectional Learning for Time-series Models with Hidden Units (TO, HK, TS), pp. 2711–2720.
ICMLICML-2017-PadSCTU #taxonomy
Dictionary Learning Based on Sparse Distribution Tomography (PP, FS, LEC, PT, MU), pp. 2731–2740.
ICMLICML-2017-PentinaL #multi
Multi-task Learning with Labeled and Unlabeled Tasks (AP, CHL), pp. 2807–2816.
ICMLICML-2017-PintoDSG #robust
Robust Adversarial Reinforcement Learning (LP, JD, RS, AG0), pp. 2817–2826.
ICMLICML-2017-RiquelmeGL #estimation #linear #modelling
Active Learning for Accurate Estimation of Linear Models (CR, MG, AL), pp. 2931–2939.
ICMLICML-2017-Shalev-ShwartzS
Failures of Gradient-Based Deep Learning (SSS, OS, SS), pp. 3067–3075.
ICMLICML-2017-ShamirS #feedback #online #permutation
Online Learning with Local Permutations and Delayed Feedback (OS, LS), pp. 3086–3094.
ICMLICML-2017-ShrikumarGK #difference
Learning Important Features Through Propagating Activation Differences (AS, PG, AK), pp. 3145–3153.
ICMLICML-2017-SilverHHSGHDRRB #predict
The Predictron: End-To-End Learning and Planning (DS, HvH, MH, TS, AG, TH, GDA, DPR, NCR, AB, TD), pp. 3191–3199.
ICMLICML-2017-SunRMW #named
meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (XS0, XR, SM, HW), pp. 3299–3308.
ICMLICML-2017-SunVGBB #predict
Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction (WS0, AV, GJG, BB, JAB), pp. 3309–3318.
ICMLICML-2017-TandonLDK #distributed
Gradient Coding: Avoiding Stragglers in Distributed Learning (RT, QL, AGD, NK), pp. 3368–3376.
ICMLICML-2017-TanM #modelling
Partitioned Tensor Factorizations for Learning Mixed Membership Models (ZT, SM0), pp. 3358–3367.
ICMLICML-2017-ToshD
Diameter-Based Active Learning (CT, SD), pp. 3444–3452.
ICMLICML-2017-UmlauftH #probability
Learning Stable Stochastic Nonlinear Dynamical Systems (JU, SH), pp. 3502–3510.
ICMLICML-2017-UrschelBMR #process
Learning Determinantal Point Processes with Moments and Cycles (JU, VEB, AM, PR), pp. 3511–3520.
ICMLICML-2017-VaswaniKWGLS #independence #online
Model-Independent Online Learning for Influence Maximization (SV, BK, ZW, MG, LVSL, MS), pp. 3530–3539.
ICMLICML-2017-VezhnevetsOSHJS #network
FeUdal Networks for Hierarchical Reinforcement Learning (ASV, SO, TS, NH, MJ, DS, KK), pp. 3540–3549.
ICMLICML-2017-VillegasYZSLL #predict
Learning to Generate Long-term Future via Hierarchical Prediction (RV, JY, YZ, SS, XL, HL), pp. 3560–3569.
ICMLICML-2017-VorontsovTKP #dependence #network #on the #orthogonal
On orthogonality and learning recurrent networks with long term dependencies (EV, CT, SK, CP), pp. 3570–3578.
ICMLICML-2017-WangKS0 #distributed #performance
Efficient Distributed Learning with Sparsity (JW, MK, NS, TZ0), pp. 3636–3645.
ICMLICML-2017-WangLJK #kernel #optimisation
Batched High-dimensional Bayesian Optimization via Structural Kernel Learning (ZW, CL, SJ, PK), pp. 3656–3664.
ICMLICML-2017-White #specification
Unifying Task Specification in Reinforcement Learning (MW), pp. 3742–3750.
ICMLICML-2017-XiaQCBYL
Dual Supervised Learning (YX, TQ, WC0, JB0, NY, TYL), pp. 3789–3798.
ICMLICML-2017-XieDZKYZX #constraints #modelling
Learning Latent Space Models with Angular Constraints (PX, YD, YZ, AK, YY, JZ, EPX), pp. 3799–3810.
ICMLICML-2017-XuLZ #process #sequence
Learning Hawkes Processes from Short Doubly-Censored Event Sequences (HX, DL, HZ), pp. 3831–3840.
ICMLICML-2017-YangFSH #clustering #towards
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering (BY, XF0, NDS, MH), pp. 3861–3870.
ICMLICML-2017-ZenkePG
Continual Learning Through Synaptic Intelligence (FZ, BP, SG), pp. 3987–3995.
ICMLICML-2017-Zhang0KALZ #linear #modelling #named #precise
ZipML: Training Linear Models with End-to-End Low Precision, and a Little Bit of Deep Learning (HZ, JL0, KK, DA, JL0, CZ), pp. 4035–4043.
ICMLICML-2017-ZhangHTC
Re-revisiting Learning on Hypergraphs: Confidence Interval and Subgradient Method (CZ, SH, ZGT, THHC), pp. 4026–4034.
ICMLICML-2017-ZhangZZHZ #distributed #network #online
Projection-free Distributed Online Learning in Networks (WZ0, PZ, WZ0, SCHH, TZ), pp. 4054–4062.
ICMLICML-2017-ZhaoSE #generative #modelling
Learning Hierarchical Features from Deep Generative Models (SZ, JS, SE), pp. 4091–4099.
ICMLICML-2017-ZhaoYKJB #architecture
Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture (MZ, SY, DK, TSJ, MTB), pp. 4100–4109.
ICMLICML-2017-ZoghiTGKSW #modelling #online #probability #rank
Online Learning to Rank in Stochastic Click Models (MZ, TT, MG, BK, CS, ZW), pp. 4199–4208.
KDDKDD-2017-0013H #paradigm #predict
Constructivism Learning: A Learning Paradigm for Transparent Predictive Analytics (XL0, JH), pp. 285–294.
KDDKDD-2017-AmandH #composition #metric
Sparse Compositional Local Metric Learning (JSA, JH), pp. 1097–1104.
KDDKDD-2017-AngelinoLASR
Learning Certifiably Optimal Rule Lists (EA, NLS, DA, MS, CR), pp. 35–44.
KDDKDD-2017-ChoiBSSS #graph #named #representation
GRAM: Graph-based Attention Model for Healthcare Representation Learning (EC, MTB, LS, WFS, JS), pp. 787–795.
KDDKDD-2017-DadkhahiM #detection #embedded #network
Learning Tree-Structured Detection Cascades for Heterogeneous Networks of Embedded Devices (HD, BMM), pp. 1773–1781.
KDDKDD-2017-DebGIPVYY #automation #named #network #policy #predict
AESOP: Automatic Policy Learning for Predicting and Mitigating Network Service Impairments (SD, ZG, SI, SCP, SV, HY, JY), pp. 1783–1792.
KDDKDD-2017-DongCS #named #network #representation #scalability
metapath2vec: Scalable Representation Learning for Heterogeneous Networks (YD, NVC, AS), pp. 135–144.
KDDKDD-2017-EmraniMX #multi #using
Prognosis and Diagnosis of Parkinson's Disease Using Multi-Task Learning (SE, AM, WX), pp. 1457–1466.
KDDKDD-2017-How #nondeterminism #theory and practice
Planning and Learning under Uncertainty: Theory and Practice (JPH), p. 19.
KDDKDD-2017-IosifidisN #scalability #sentiment
Large Scale Sentiment Learning with Limited Labels (VI, EN), pp. 1823–1832.
KDDKDD-2017-LabutovHBH #mining
Semi-Supervised Techniques for Mining Learning Outcomes and Prerequisites (IL, YH0, PB, DH), pp. 907–915.
KDDKDD-2017-LiuPH #distributed #multi
Distributed Multi-Task Relationship Learning (SL, SJP, QH), pp. 937–946.
KDDKDD-2017-LuoZQYYWYW #functional #multi
Functional Annotation of Human Protein Coding Isoforms via Non-convex Multi-Instance Learning (TL, WZ, SQ, YY, DY, GW, JY, JW0), pp. 345–354.
KDDKDD-2017-OvadiaHKLNPZS
Learning to Count Mosquitoes for the Sterile Insect Technique (YO, YH, DK, JL, DN, RP, TZ, DS), pp. 1943–1949.
KDDKDD-2017-RibeiroSF #named
struc2vec: Learning Node Representations from Structural Identity (LFRR, PHPS, DRF), pp. 385–394.
KDDKDD-2017-ShenHGC #comprehension #named
ReasoNet: Learning to Stop Reading in Machine Comprehension (YS, PSH, JG, WC), pp. 1047–1055.
KDDKDD-2017-SpringS #random #scalability
Scalable and Sustainable Deep Learning via Randomized Hashing (RS, AS), pp. 445–454.
KDDKDD-2017-TangW0M
End-to-end Learning for Short Text Expansion (JT, YW, KZ0, QM), pp. 1105–1113.
KDDKDD-2017-TongKIYKSV #multi
Learning to Generate Rock Descriptions from Multivariate Well Logs with Hierarchical Attention (BT, MK, MI, TY, YK, AS, RV), pp. 2031–2040.
KDDKDD-2017-UesakaMSKMAY #multi #visual notation
Multi-view Learning over Retinal Thickness and Visual Sensitivity on Glaucomatous Eyes (TU, KM, HS, TK, HM, RA, KY), pp. 2041–2050.
KDDKDD-2017-WangYRTZYW #editing #recommendation
Dynamic Attention Deep Model for Article Recommendation by Learning Human Editors' Demonstration (XW, LY, KR, GT, WZ0, YY0, JW0), pp. 2051–2059.
KDDKDD-2017-XiaoGVT #behaviour
Learning Temporal State of Diabetes Patients via Combining Behavioral and Demographic Data (HX, JG0, LHV, DST), pp. 2081–2089.
KDDKDD-2017-XieBLZ #distributed #multi #privacy
Privacy-Preserving Distributed Multi-Task Learning with Asynchronous Updates (LX, IMB, KL, JZ), pp. 1195–1204.
KDDKDD-2017-YangBZY0 #approach #collaboration #recommendation
Bridging Collaborative Filtering and Semi-Supervised Learning: A Neural Approach for POI Recommendation (CY, LB, CZ0, QY0, JH0), pp. 1245–1254.
KDDKDD-2017-YeZMPB #network
Learning from Labeled and Unlabeled Vertices in Networks (WY0, LZ, DM, CP, CB), pp. 1265–1274.
KDDKDD-2017-YouX0T #education #multi #network
Learning from Multiple Teacher Networks (SY, CX0, CX0, DT), pp. 1285–1294.
KDDKDD-2017-ZhangCTSS #effectiveness #multi #named
LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for Multimorbidity (YZ, RC, JT0, WFS, JS), pp. 1315–1324.
KDDKDD-2017-ZhanZ #induction #multi
Inductive Semi-supervised Multi-Label Learning with Co-Training (WZ, MLZ), pp. 1305–1314.
KDDKDD-2017-ZhengBLL #detection #metric
Contextual Spatial Outlier Detection with Metric Learning (GZ, SLB, TL, ZL), pp. 2161–2170.
KDDKDD-2017-ZhouLZCLYCYCDQ #distributed #named #parametricity
KunPeng: Parameter Server based Distributed Learning Systems and Its Applications in Alibaba and Ant Financial (JZ, XL, PZ, CC, LL, XY, QC, JY, XC, YD, Y(Q), pp. 1693–1702.
OOPSLAOOPSLA-2017-ChaeOHY #automation #generative #heuristic #program analysis
Automatically generating features for learning program analysis heuristics for C-like languages (KC, HO, KH, HY), p. 25.
OOPSLAOOPSLA-2017-SantolucitoZDSP #specification
Synthesizing configuration file specifications with association rule learning (MS, EZ, RD, AS, RP), p. 20.
OOPSLAOOPSLA-2017-SeidelSCWJ #data-driven #fault
Learning to blame: localizing novice type errors with data-driven diagnosis (ELS, HS, KC, WW, RJ), p. 27.
OOPSLAOOPSLA-2017-WuCC #error message
Learning user friendly type-error messages (BW, JPCI, SC0), p. 29.
PADLPADL-2017-Vennekens #api #declarative #programming #python
Lowering the Learning Curve for Declarative Programming: A Python API for the IDP System (JV), pp. 86–102.
POPLPOPL-2017-MoermanS0KS #automaton
Learning nominal automata (JM, MS, AS0, BK, MS), pp. 613–625.
PPDPPPDP-2017-HoweRK #symmetry
Theory learning with symmetry breaking (JMH, ER, AK), pp. 85–96.
SASSAS-2017-BrockschmidtCKK #analysis
Learning Shape Analysis (MB, YC, PK, SK, DT), pp. 66–87.
ASEASE-2017-JamshidiSVKPA #analysis #configuration management #modelling #performance
Transfer learning for performance modeling of configurable systems: an exploratory analysis (PJ, NS, MV, CK, AP, YA), pp. 497–508.
ASEASE-2017-Krishna #effectiveness
Learning effective changes for software projects (RK), pp. 1002–1005.
ASEASE-2017-RafiqDRBYSLCPN #adaptation #network #online #re-engineering #social
Learning to share: engineering adaptive decision-support for online social networks (YR, LD, AR, AKB, MY, AS, ML, GC, BAP, BN), pp. 280–285.
ESEC-FSEESEC-FSE-2017-FuM #case study
Easy over hard: a case study on deep learning (WF0, TM), pp. 49–60.
ESEC-FSEESEC-FSE-2017-FuM17a #fault #predict
Revisiting unsupervised learning for defect prediction (WF0, TM), pp. 72–83.
ESEC-FSEESEC-FSE-2017-LeeHLKJ #automation #debugging #industrial
Applying deep learning based automatic bug triager to industrial projects (SRL, MJH, CGL, MK, GJ), pp. 926–931.
ESEC-FSEESEC-FSE-2017-MuraliCJ #api #fault #specification
Bayesian specification learning for finding API usage errors (VM, SC, CJ), pp. 151–162.
ICSE-2017-0004CC #semantics #traceability #using
Semantically enhanced software traceability using deep learning techniques (JG0, JC, JCH), pp. 3–14.
ICSE-2017-ChenBHXZX #compilation #source code #testing
Learning to prioritize test programs for compiler testing (JC0, YB, DH, YX, HZ0, BX), pp. 700–711.
ICSE-2017-RolimSDPGGSH #program transformation
Learning syntactic program transformations from examples (RR, GS, LD, OP, SG, RG, RS, BH), pp. 404–415.
GPCEGPCE-2017-MartiniH #automation #case study #experience #generative
Automatic generation of virtual learning spaces driven by CaVaDSL: an experience report (RGM, PRH), pp. 233–245.
ASPLOSASPLOS-2017-LiCCZ #modelling #named #topic
SaberLDA: Sparsity-Aware Learning of Topic Models on GPUs (KL, JC0, WC, JZ0), pp. 497–509.
CASECASE-2017-ChuckLKJFG #automation #statistics
Statistical data cleaning for deep learning of automation tasks from demonstrations (CC, ML, SK, RJ, RF, KG), pp. 1142–1149.
CASECASE-2017-GohSS #modelling #predict
A model-based learning controller with predictor augmentation for non-stationary conditions and time delay in water shooting (CFG, GLGS, KS), pp. 1110–1117.
CASECASE-2017-HanPM #approach #linear #modelling
Model-based reinforcement learning approach for deformable linear object manipulation (HH, GP, TM), pp. 750–755.
CASECASE-2017-KapadiaSJG #named
EchoBot: Facilitating data collection for robot learning with the Amazon echo (RK, SS, LJ, KG), pp. 159–165.
CASECASE-2017-LaiJG #energy #parametricity #predict
An integrated physical-based and parameter learning method for ship energy prediction under varying operating conditions (XL, XJ, XG), pp. 1180–1185.
CASECASE-2017-LiangMLLG #automation #industrial #using
Using dVRK teleoperation to facilitate deep learning of automation tasks for an industrial robot (JL, JM, ML, PL, KG), pp. 1–8.
CASECASE-2017-LiXLK #approach #classification #physics
Improving colorectal polyp classification based on physical examination data - A ensemble learning approach (CL, XX, JL, NK), pp. 193–194.
CASECASE-2017-LiXZ #analysis #complexity
Complexity analysis of reinforcement learning and its application to robotics (BL, LX, QZ), pp. 1425–1426.
CASECASE-2017-LuRSW #detection #visual notation
Visual guided deep learning scheme for fall detection (NL, XR, JS, YW), pp. 801–806.
CASECASE-2017-PengZH #distributed #fault
Distributed fault diagnosis with shared-basis and B-splines-based matched learning (CP, YZ, QH), pp. 536–541.
CASECASE-2017-RenWJ #equivalence
Engineering effect equivalence enabled transfer learning (JR, HW, XJ), pp. 1174–1179.
CASECASE-2017-SunLZJ #framework #functional #using
Exploring functional variant using a deep learning framework (TS, ZL, XMZ, RJ), pp. 98–99.
CASECASE-2017-ZhaoCDW #fault #multi #taxonomy
TQWT-based multi-scale dictionary learning for rotating machinery fault diagnosis (ZZ, XC, BD, SW), pp. 554–559.
CASECASE-2017-ZhengLC #comparison #policy #realtime
Comparison study of two reinforcement learning based real-time control policies for two-machine-one-buffer production system (WZ, YL, QC), pp. 1163–1168.
CASECASE-2017-ZhouWY #approach
Dynamic dispatching for re-entrant production lines - A deep learning approach (FYZ, CHW, CJY), pp. 1026–1031.
CGOCGO-2017-OgilvieP0L #compilation #cost analysis
Minimizing the cost of iterative compilation with active learning (WFO, PP, ZW0, HL), pp. 245–256.
CAVCAV-2017-BielikRV
Learning a Static Analyzer from Data (PB, VR, MTV), pp. 233–253.
CAVCAV-2017-Vazquez-Chanlatte #clustering #logic
Logical Clustering and Learning for Time-Series Data (MVC, JVD, XJ, SAS), pp. 305–325.
CSLCSL-2017-AngluinAF #polynomial #query
Query Learning of Derived Omega-Tree Languages in Polynomial Time (DA, TA, DF), p. 21.
CSLCSL-2017-HeerdtS0 #automaton #category theory #framework #named
CALF: Categorical Automata Learning Framework (GvH, MS, AS0), p. 24.
ICSTICST-2017-TapplerAB #automaton #communication #modelling #testing
Model-Based Testing IoT Communication via Active Automata Learning (MT, BKA, RB), pp. 276–287.
ICTSSICTSS-2017-MaAYE #execution #testing
Fragility-Oriented Testing with Model Execution and Reinforcement Learning (TM, SA0, TY0, ME), pp. 3–20.
CSEETCSEET-2016-DaunSWPT #case study #experience #industrial #requirements
Project-Based Learning with Examples from Industry in University Courses: An Experience Report from an Undergraduate Requirements Engineering Course (MD, AS, TW, KP, BT), pp. 184–193.
CSEETCSEET-2016-FreitasSM #student #using
Using an Active Learning Environment to Increase Students' Engagement (SAAdF, WCMPS, GM), pp. 232–236.
CSEETCSEET-2016-GeorgasPM #architecture #runtime #using #visualisation
Supporting Software Architecture Learning Using Runtime Visualization (JCG, JDP, MJM), pp. 101–110.
CSEETCSEET-2016-LetouzeSS #case study #generative #web
Generating Software Engineers by Developing Web Systems: A Project-Based Learning Case Study (PL, JIMdS, VMDS), pp. 194–203.
CSEETCSEET-2016-ShutoWKFYO #education #effectiveness #re-engineering
Learning Effectiveness of Team Discussions in Various Software Engineering Education Courses (MS, HW, KK, YF, SY, MO), pp. 227–231.
CSEETCSEET-2016-SunagaSWKFYO #effectiveness #question
Which Combinations of Personal Characteristic Types are more Effective in Different Project-Based Learning Courses? (YS, MS, HW, KK, YF, SY, MO), pp. 137–141.
EDMEDM-2016-BhartiyaCBSM #documentation #segmentation
Document Segmentation for Labeling with Academic Learning Objectives (DB, DC, SB, BS, MKM), pp. 282–287.
EDMEDM-2016-BuffumFBWML #assessment #collaboration #embedded #mining #sequence
Mining Sequences of Gameplay for Embedded Assessment in Collaborative Learning (PSB, MF, KEB, ENW, BWM, JCL), pp. 575–576.
EDMEDM-2016-ChoiLHLRW #data-driven #interactive
Exploring Learning Management System Interaction Data: Combining Data-driven and Theory-driven Approaches (HC, JEL, WJH, KL, MR, AW), pp. 324–329.
EDMEDM-2016-CraigHXFH #behaviour #identification #persistent #predict
Identifying relevant user behavior and predicting learning and persistence in an ITS-based afterschool program (SDC, XH, JX, YF, XH), pp. 581–582.
EDMEDM-2016-CutumisuS #assessment #feedback #game studies
Choosing versus Receiving Feedback: The Impact of Feedback Valence on Learning in an Assessment Game (MC, DLS), pp. 341–346.
EDMEDM-2016-DaiAY #analysis #recommendation #towards
Course Content Analysis: An Initiative Step toward Learning Object Recommendation Systems for MOOC Learners (YD, YA, MY), pp. 347–352.
EDMEDM-2016-DavisCHH
Gauging MOOC Learners' Adherence to the Designed Learning Path (DD, GC, CH, GJH), pp. 54–61.
EDMEDM-2016-DianaESK #metric #self #student
Extracting Measures of Active Learning and Student Self-Regulated Learning Strategies from MOOC Data (ND, ME, JCS, KRK), pp. 583–584.
EDMEDM-2016-DibieSMQ #community #online #social
Exploring Social Influence on the Usage of Resources in an Online Learning Community (OD, TS, KEM, DQ), pp. 585–586.
EDMEDM-2016-DominguezBU #modelling #predict
Predicting STEM Achievement with Learning Management System Data: Prediction Modeling and a Test of an Early Warning System (MD, MLB, PMU), pp. 589–590.
EDMEDM-2016-DongKB #comparison #mining #multi #process
Comparison of Selection Criteria for Multi-Feature Hierarchical Activity Mining in Open Ended Learning Environments (YD, JSK, GB), pp. 591–592.
EDMEDM-2016-FeildLZRE #automation #feedback #framework #platform #scalability
A Scalable Learning Analytics Platform for Automated Writing Feedback (JLF, NL, NLZ, MR, AE), pp. 688–693.
EDMEDM-2016-HuangB #framework #modelling #student #towards
Towards Modeling Chunks in a Knowledge Tracing Framework for Students' Deep Learning (YH0, PB), pp. 666–668.
EDMEDM-2016-HuttMWDD #detection
The Eyes Have It: Gaze-based Detection of Mind Wandering during Learning with an Intelligent Tutoring System (SH, CM, SW, PJD, SKD), pp. 86–93.
EDMEDM-2016-JoL #how #online
How to Judge Learning on Online Learning: Minimum Learning Judgment System (JJ, HL), pp. 597–598.
EDMEDM-2016-JoTFRG #behaviour #modelling #social
Expediting Support for Social Learning with Behavior Modeling (YJ, GT, OF, CPR, DG), pp. 400–405.
EDMEDM-2016-Kay #people
Enabling people to harness and control EDM for lifelong, life-wide learning (JK), p. 4.
EDMEDM-2016-Kay16a #people
Enabling people to harness and control EDM for lifelong, life-wide learning (JK), pp. 10–20.
EDMEDM-2016-LabutovL #web
Web as a textbook: Curating Targeted Learning Paths through the Heterogeneous Learning Resources on the Web (IL, HL), pp. 110–118.
EDMEDM-2016-LanB #framework #personalisation
A Contextual Bandits Framework for Personalized Learning Action Selection (ASL, RGB), pp. 424–429.
EDMEDM-2016-LeeRBY #analysis #approach #clustering #heatmap #interactive #visualisation
Hierarchical Cluster Analysis Heatmaps and Pattern Analysis: An Approach for Visualizing Learning Management System Interaction Data (JEL, MR, AB, MY), pp. 603–604.
EDMEDM-2016-Linn
WISE Ways to Strengthen Inquiry Science Learning (MCL), p. 3.
EDMEDM-2016-MacLellanHPK #architecture #education
The Apprentice Learner architecture: Closing the loop between learning theory and educational data (CJM, EH, RP, KRK), pp. 151–158.
EDMEDM-2016-Nam #adaptation #behaviour #predict
Predicting Off-task Behaviors for Adaptive Vocabulary Learning System (SN), pp. 672–674.
EDMEDM-2016-NgHLK #modelling #sequence #using
Modelling the way: Using action sequence archetypes to differentiate learning pathways from learning outcomes (KHRN, KH, KL, AWHK), pp. 167–174.
EDMEDM-2016-NiuNZWKY #algorithm #clustering
A Coupled User Clustering Algorithm for Web-based Learning Systems (KN, ZN, XZ, CW, KK, MY), pp. 175–182.
EDMEDM-2016-QuigleyDSHPSAP
Equity of Learning Opportunities in the Chicago City of Learning Program (DQ, OD, MAS, KVH, WRP, TS, UA, NP), pp. 618–619.
EDMEDM-2016-Rau #concept #mining #physics #social
Pattern mining uncovers social prompts of conceptual learning with physical and virtual representations (MAR), pp. 478–483.
EDMEDM-2016-RauMN16a #how #similarity #visual notation
How to Model Implicit Knowledge? Similarity Learning Methods to Assess Perceptions of Visual Representations (MAR, BM, RDN), pp. 199–206.
EDMEDM-2016-RauMN16a_ #how #similarity #visual notation
How to Model Implicit Knowledge? Similarity Learning Methods to Assess Perceptions of Visual Representations (MAR, BM, RDN), pp. 199–206.
EDMEDM-2016-RoweAEHBBE #game studies #metric #validation
Validating Game-based Measures of Implicit Science Learning (ER, JAC, ME, AH, TB, RB, TE), pp. 490–495.
EDMEDM-2016-Sande #component #multi #problem
Learning Curves for Problems with Multiple Knowledge Components (BvdS), pp. 523–526.
EDMEDM-2016-Sande16a #analysis #component #problem
Learning curves versus problem difficulty: an analysis of the Knowledge Component picture for a given context (BvdS), pp. 646–647.
EDMEDM-2016-ShenC #feature model #modelling
Aim Low: Correlation-based Feature Selection for Model-based Reinforcement Learning (SS, MC), pp. 507–512.
EDMEDM-2016-SlaterOBSIH #problem #semantics #student
Semantic Features of Math Problems: Relationships to Student Learning and Engagement (SS, JO, RSB, PS, PSI, NTH), pp. 223–230.
EDMEDM-2016-SnowKPFB #how #online #performance #student
Quantifying How Students Use an Online Learning System: A Focus on Transitions and Performance (ELS, AEK, TEP, MF, AJB), pp. 640–641.
EDMEDM-2016-StapelZP #online #performance #predict #student
An Ensemble Method to Predict Student Performance in an Online Math Learning Environment (MS, ZZ, NP), pp. 231–238.
EDMEDM-2016-SunY #community #online #personalisation
Personalization of Learning Paths in Online Communities of Creators (MS, SY), pp. 513–516.
EDMEDM-2016-Wang #concept #design #interactive #personalisation
Designing Interactive and Personalized Concept Mapping Learning Environments (SW0), pp. 678–680.
EDMEDM-2016-WenMWDHR #collaboration #integration #online #predict
Transactivity as a Predictor of Future Collaborative Knowledge Integration in Team-Based Learning in Online Courses (MW, KM, XW0, SD, JDH, CPR), pp. 533–538.
EDMEDM-2016-YadavSKSD #framework #named #platform
TutorSpace: Content-centric Platform for Enabling Blended Learning in Developing Countries (KY, KS, RK, SS, OD), pp. 705–706.
EDMEDM-2016-Yee-Kingd #collaboration #markov #online #process #social
Stimulating collaborative activity in online social learning environments with Markov decision processes (MYK, Md), pp. 652–653.
EDMEDM-2016-Yee-KingGd #collaboration #metric #online #predict #social #student #using
Predicting student grades from online, collaborative social learning metrics using K-NN (MYK, AGR, Md), pp. 654–655.
EDMEDM-2016-ZhangSC #automation #clustering #effectiveness #modelling #student
Deep Learning + Student Modeling + Clustering: a Recipe for Effective Automatic Short Answer Grading (YZ, RS, MC), pp. 562–567.
EDMEDM-2016-ZhengSP #exclamation #student
Perfect Scores Indicate Good Students !? The Case of One Hundred Percenters in a Math Learning System (ZZ, MS, NP), pp. 660–661.
ICPCICPC-2016-TianWLG #debugging #rank #recommendation
Learning to rank for bug report assignee recommendation (YT0, DW, DL0, CLG), pp. 1–10.
ICSMEICSME-2016-YeXFLK #api #natural language
Learning to Extract API Mentions from Informal Natural Language Discussions (DY, ZX, CYF, JL0, NK), pp. 389–399.
FMFM-2016-ChenP0 #cyber-physical #invariant #towards #verification
Towards Learning and Verifying Invariants of Cyber-Physical Systems by Code Mutation (YC0, CMP, JS0), pp. 155–163.
FMFM-2016-GiantamidisT
Learning Moore Machines from Input-Output Traces (GG, ST), pp. 291–309.
IFM-2016-BosSV #automaton #metric
Enhancing Automata Learning by Log-Based Metrics (PvdB, RS, FWV), pp. 295–310.
IFM-2016-SchutsHV #case study #equivalence #experience #industrial #legacy #refactoring #using
Refactoring of Legacy Software Using Model Learning and Equivalence Checking: An Industrial Experience Report (MS, JH, FWV), pp. 311–325.
ICFP-2016-Abadi #named #scalability
TensorFlow: learning functions at scale (MA), p. 1.
AIIDEAIIDE-2016-HarrisonR #crowdsourcing #using
Learning From Stories: Using Crowdsourced Narratives to Train Virtual Agents (BH, MOR), pp. 183–189.
AIIDEAIIDE-2016-SummervilleM #design
Mystical Tutor: A Magic: The Gathering Design Assistant via Denoising Sequence-to-Sequence Learning (AJS, MM), pp. 86–92.
CHI-PLAYCHI-PLAY-2016-BonsignoreHKVF #game studies #people
Roles People Play: Key Roles Designed to Promote Participation and Learning in Alternate Reality Games (EB, DLH, KK, AV, AF), pp. 78–90.
CoGCIG-2016-Bursztein #statistics #using
I am a legend: Hacking hearthstone using statistical learning methods (EB), pp. 1–8.
CoGCIG-2016-CazenaveLTT #game studies #random #using
Learning opening books in partially observable games: Using random seeds in Phantom Go (TC, JL0, FT, OT), pp. 1–7.
CoGCIG-2016-ChuIHT #game studies #video
Position-based reinforcement learning biased MCTS for General Video Game Playing (CYC, SI, TH, RT), pp. 1–8.
CoGCIG-2016-KempkaWRTJ #framework #named #platform #research #visual notation
ViZDoom: A Doom-based AI research platform for visual reinforcement learning (MK, MW, GR, JT, WJ), pp. 1–8.
CoGCIG-2016-Shaker #framework #generative #motivation
Intrinsically motivated reinforcement learning: A promising framework for procedural content generation (NS), pp. 1–8.
CoGCIG-2016-ShakerA #experience #predict
Transfer learning for cross-game prediction of player experience (NS, MAZ), pp. 1–8.
CoGCIG-2016-ShiC #generative #online
Online level generation in Super Mario Bros via learning constructive primitives (PS, KC0), pp. 1–8.
CoGCIG-2016-SifaSDOB #game studies #predict #representation
Predicting Retention in Sandbox Games with Tensor Factorization-based Representation Learning (RS, SS, AD, CO, CB), pp. 1–8.
CoGCIG-2016-SungurS #algorithm #behaviour
Voluntary behavior on cortical learning algorithm based agents (AKS, ES), pp. 1–7.
DiGRADiGRA-FDG-2016-MelcerI #design #framework #game studies #physics #simulation
Bridging the Physical Learning Divides: A Design Framework for Embodied Learning Games and Simulations (EFM, KI).
CoGVS-Games-2016-FerreiraGH #case study #design #education #game studies
Game Based Learning: A Case Study on Designing an Educational Game for Children in Developing Countries (SMF, CGV, RH), pp. 1–8.
CoGVS-Games-2016-GauthierJ #game studies #problem #research
Woes of an RCT for Game-Based Learning Research - Past Problems and Potential Solutions (AG, JJ), pp. 1–2.
CoGVS-Games-2016-GomezC #design #development #game studies #prototype
Bridging Design Prototypes in the Development of Games for Formal Learning Environments (GG, DC), pp. 1–5.
CoGVS-Games-2016-PatinoRP #analysis #game studies
Analysis of Game and Learning Mechanics According to the Learning Theories (AP, MR, JNP), pp. 1–4.
CoGVS-Games-2016-RamosP #game studies
Program with Ixquic: Educative Games and Learning in Augmented and Virtual Environments (CR, TP), pp. 1–2.
CIKMCIKM-2016-0001H #adaptation #interactive #multi #named #using
aptMTVL: Nailing Interactions in Multi-Task Multi-View Multi-Label Learning using Adaptive-basis Multilinear Factor Analyzers (XL0, JH), pp. 1171–1180.
CIKMCIKM-2016-0064NRR #detection #framework #identification #multi
A Multiple Instance Learning Framework for Identifying Key Sentences and Detecting Events (WW0, YN, HR, NR), pp. 509–518.
CIKMCIKM-2016-AmandH
Discriminative View Learning for Single View Co-Training (JSA, JH), pp. 2221–2226.
CIKMCIKM-2016-BaruahZGLSV #optimisation
Optimizing Nugget Annotations with Active Learning (GB, HZ0, RG, JJL, MDS, OV), pp. 2359–2364.
CIKMCIKM-2016-ChenOX #recommendation
Learning Points and Routes to Recommend Trajectories (DC, CSO, LX), pp. 2227–2232.
CIKMCIKM-2016-CheungL #rank #robust #scalability
Scalable Spectral k-Support Norm Regularization for Robust Low Rank Subspace Learning (YmC, JL), pp. 1151–1160.
CIKMCIKM-2016-CormackG #classification #reliability #scalability
Scalability of Continuous Active Learning for Reliable High-Recall Text Classification (GVC, MRG), pp. 1039–1048.
CIKMCIKM-2016-DeveaudMN #rank
Learning to Rank System Configurations (RD, JM, JYN), pp. 2001–2004.
CIKMCIKM-2016-FengXZ #distributed
Distributed Deep Learning for Question Answering (MF, BX, BZ), pp. 2413–2416.
CIKMCIKM-2016-GyselRK
Learning Latent Vector Spaces for Product Search (CVG, MdR, EK), pp. 165–174.
CIKMCIKM-2016-HanSBW
Routing an Autonomous Taxi with Reinforcement Learning (MH, PS, SB, HW0), pp. 2421–2424.
CIKMCIKM-2016-HeTOKYC #query
Learning to Rewrite Queries (YH, JT, HO, CK, DY, YC), pp. 1443–1452.
CIKMCIKM-2016-KhabsaCAZAW #metric
Learning to Account for Good Abandonment in Search Success Metrics (MK, ACC, AHA, IZ, TA, KW), pp. 1893–1896.
CIKMCIKM-2016-LiSNLF #hashtag #rank #recommendation #topic #twitter
Hashtag Recommendation Based on Topic Enhanced Embedding, Tweet Entity Data and Learning to Rank (QL, SS, AN, XL, RF), pp. 2085–2088.
CIKMCIKM-2016-MartinoBR0M #community #using
Learning to Re-Rank Questions in Community Question Answering Using Advanced Features (GDSM, ABC, SR, AU0, AM), pp. 1997–2000.
CIKMCIKM-2016-RenZRZYW #optimisation #performance
User Response Learning for Directly Optimizing Campaign Performance in Display Advertising (KR, WZ0, YR, HZ, YY0, JW0), pp. 679–688.
CIKMCIKM-2016-SilvaGAG #rank
Compression-Based Selective Sampling for Learning to Rank (RMS, GdCMG, MSA, MAG), pp. 247–256.
CIKMCIKM-2016-SousaCRMG #feature model #rank
Incorporating Risk-Sensitiveness into Feature Selection for Learning to Rank (DXdS, SDC, TCR, WSM, MAG), pp. 257–266.
CIKMCIKM-2016-TymoshenkoBM #rank #web
Learning to Rank Non-Factoid Answers: Comment Selection in Web Forums (KT, DB, AM), pp. 2049–2052.
CIKMCIKM-2016-WangJYJM #using
Learning to Extract Conditional Knowledge for Question Answering using Dialogue (PW, LJ, JY0, LJ, WYM), pp. 277–286.
CIKMCIKM-2016-WangWW
Learning Hidden Features for Contextual Bandits (HW, QW, HW), pp. 1633–1642.
CIKMCIKM-2016-XieWY
Active Zero-Shot Learning (SX, SW, PSY), pp. 1889–1892.
CIKMCIKM-2016-XieYWXCW #graph #recommendation
Learning Graph-based POI Embedding for Location-based Recommendation (MX, HY, HW, FX, WC, SW), pp. 15–24.
CIKMCIKM-2016-YuanGJCYZ #named #ranking #using
LambdaFM: Learning Optimal Ranking with Factorization Machines Using Lambda Surrogates (FY, GG, JMJ, LC0, HY, WZ0), pp. 227–236.
CIKMCIKM-2016-ZhaoK #online #rank #reliability
Constructing Reliable Gradient Exploration for Online Learning to Rank (TZ, IK), pp. 1643–1652.
CIKMCIKM-2016-ZhengC #classification #constraints #probability
Regularizing Structured Classifier with Conditional Probabilistic Constraints for Semi-supervised Learning (VWZ, KCCC), pp. 1029–1038.
CIKMCIKM-2016-ZhengW #graph #multi
Graph-Based Multi-Modality Learning for Clinical Decision Support (ZZ, XW0), pp. 1945–1948.
CIKMCIKM-2016-ZhuangLPXH #adaptation
Ensemble of Anchor Adapters for Transfer Learning (FZ, PL0, SJP, HX, QH), pp. 2335–2340.
ECIRECIR-2016-AlmasriBC #comparison #feedback #pseudo #query
A Comparison of Deep Learning Based Query Expansion with Pseudo-Relevance Feedback and Mutual Information (MA, CB, JPC), pp. 709–715.
ECIRECIR-2016-BotevaGSR #dataset #information retrieval #rank
A Full-Text Learning to Rank Dataset for Medical Information Retrieval (VB, DGG, AS, SR), pp. 716–722.
ECIRECIR-2016-CroceB #kernel #scalability
Large-Scale Kernel-Based Language Learning Through the Ensemble Nystr đdoto o ¨ m Methods (DC, RB0), pp. 100–112.
ECIRECIR-2016-IencoRRRT #mining #modelling #multi
MultiLingMine 2016: Modeling, Learning and Mining for Cross/Multilinguality (DI, MR, SR, PR, AT), pp. 869–873.
ECIRECIR-2016-LiWPA #analysis #empirical #sentiment
An Empirical Study of Skip-Gram Features and Regularization for Learning on Sentiment Analysis (CL, BW, VP, JAA), pp. 72–87.
ECIRECIR-2016-MiottoLD #health #predict
Deep Learning to Predict Patient Future Diseases from the Electronic Health Records (RM, LL0, JTD), pp. 768–774.
ECIRECIR-2016-MustoSGL #recommendation #wiki #word
Learning Word Embeddings from Wikipedia for Content-Based Recommender Systems (CM, GS, MdG, PL), pp. 729–734.
ECIRECIR-2016-NiuLC #approach #named #twitter
LExL: A Learning Approach for Local Expert Discovery on Twitter (WN, ZL, JC), pp. 803–809.
ECIRECIR-2016-WangGLXC #multi #predict #representation
Multi-task Representation Learning for Demographic Prediction (PW, JG, YL, JX0, XC), pp. 88–99.
ECIRECIR-2016-ZhangDW #case study #category theory #multi #predict
Deep Learning over Multi-field Categorical Data - - A Case Study on User Response Prediction (WZ0, TD, JW0), pp. 45–57.
ICMLICML-2016-AJFMS #cumulative #predict
Cumulative Prospect Theory Meets Reinforcement Learning: Prediction and Control (PLA, CJ, MCF0, SIM, CS), pp. 1406–1415.
ICMLICML-2016-AkrourNAA #optimisation
Model-Free Trajectory Optimization for Reinforcement Learning (RA, GN, HA, AA), pp. 2961–2970.
ICMLICML-2016-AroraMM #multi #optimisation #probability #representation #using
Stochastic Optimization for Multiview Representation Learning using Partial Least Squares (RA, PM, TVM), pp. 1786–1794.
ICMLICML-2016-BaiRWS #classification #difference #geometry
Differential Geometric Regularization for Supervised Learning of Classifiers (QB, SR, ZW, SS), pp. 1879–1888.
ICMLICML-2016-BalkanskiMKS #combinator
Learning Sparse Combinatorial Representations via Two-stage Submodular Maximization (EB, BM, AK0, YS), pp. 2207–2216.
ICMLICML-2016-CohenHK #feedback #graph #online
Online Learning with Feedback Graphs Without the Graphs (AC, TH, TK), pp. 811–819.
ICMLICML-2016-DaneshmandLH #adaptation
Starting Small - Learning with Adaptive Sample Sizes (HD, AL, TH), pp. 1463–1471.
ICMLICML-2016-DuanCHSA #benchmark #metric
Benchmarking Deep Reinforcement Learning for Continuous Control (YD, XC0, RH, JS, PA), pp. 1329–1338.
ICMLICML-2016-FernandoG #classification #video
Learning End-to-end Video Classification with Rank-Pooling (BF, SG), pp. 1187–1196.
ICMLICML-2016-FinnLA #optimisation #policy
Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization (CF, SL, PA), pp. 49–58.
ICMLICML-2016-FriesenD #modelling #theorem
The Sum-Product Theorem: A Foundation for Learning Tractable Models (ALF, PMD), pp. 1909–1918.
ICMLICML-2016-GalG #approximate #nondeterminism #representation
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning (YG, ZG), pp. 1050–1059.
ICMLICML-2016-GlaudeP #automaton #probability
PAC learning of Probabilistic Automaton based on the Method of Moments (HG, OP), pp. 820–829.
ICMLICML-2016-GuanRW #markov #multi #performance #process #recognition #using
Efficient Multi-Instance Learning for Activity Recognition from Time Series Data Using an Auto-Regressive Hidden Markov Model (XG, RR, WKW), pp. 2330–2339.
ICMLICML-2016-HammCB #multi
Learning privately from multiparty data (JH, YC, MB), pp. 555–563.
ICMLICML-2016-HashimotoGJ #generative
Learning Population-Level Diffusions with Generative RNNs (TBH, DKG, TSJ), pp. 2417–2426.
ICMLICML-2016-HeB #modelling
Opponent Modeling in Deep Reinforcement Learning (HH0, JLBG), pp. 1804–1813.
ICMLICML-2016-HoGE #optimisation #policy
Model-Free Imitation Learning with Policy Optimization (JH, JKG, SE), pp. 2760–2769.
ICMLICML-2016-JiangL #evaluation #robust
Doubly Robust Off-policy Value Evaluation for Reinforcement Learning (NJ, LL0), pp. 652–661.
ICMLICML-2016-JohanssonSS
Learning Representations for Counterfactual Inference (FDJ, US, DAS), pp. 3020–3029.
ICMLICML-2016-Kasiviswanathan #empirical #performance
Efficient Private Empirical Risk Minimization for High-dimensional Learning (SPK, HJ), pp. 488–497.
ICMLICML-2016-KatariyaKSW #multi #rank
DCM Bandits: Learning to Rank with Multiple Clicks (SK, BK, CS, ZW), pp. 1215–1224.
ICMLICML-2016-KawakitaT
Barron and Cover's Theory in Supervised Learning and its Application to Lasso (MK, JT), pp. 1958–1966.
ICMLICML-2016-LeeYH #multi #symmetry
Asymmetric Multi-task Learning based on Task Relatedness and Confidence (GL, EY, SJH), pp. 230–238.
ICMLICML-2016-LeKYC #online #predict #sequence
Smooth Imitation Learning for Online Sequence Prediction (HML0, AK, YY, PC0), pp. 680–688.
ICMLICML-2016-LererGF #physics
Learning Physical Intuition of Block Towers by Example (AL, SG, RF), pp. 430–438.
ICMLICML-2016-LiuSSF #markov #network
Structure Learning of Partitioned Markov Networks (SL0, TS, MS, KF), pp. 439–448.
ICMLICML-2016-LiuY #multi
Cross-Graph Learning of Multi-Relational Associations (HL, YY), pp. 2235–2243.
ICMLICML-2016-LiZALH #optimisation #probability
Stochastic Variance Reduced Optimization for Nonconvex Sparse Learning (XL, TZ, RA, HL0, JDH), pp. 917–925.
ICMLICML-2016-LiZZ #memory management
Learning to Generate with Memory (CL, JZ0, BZ0), pp. 1177–1186.
ICMLICML-2016-LouizosW #matrix #performance
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors (CL, MW), pp. 1708–1716.
ICMLICML-2016-MenschMTV #matrix #taxonomy
Dictionary Learning for Massive Matrix Factorization (AM, JM, BT, GV), pp. 1737–1746.
ICMLICML-2016-MnihBMGLHSK
Asynchronous Methods for Deep Reinforcement Learning (VM, APB, MM, AG, TPL, TH, DS, KK), pp. 1928–1937.
ICMLICML-2016-MussmannE
Learning and Inference via Maximum Inner Product Search (SM, SE), pp. 2587–2596.
ICMLICML-2016-NiepertAK #graph #network
Learning Convolutional Neural Networks for Graphs (MN, MA, KK), pp. 2014–2023.
ICMLICML-2016-OswalCRRN #network #similarity
Representational Similarity Learning with Application to Brain Networks (UO, CRC, MALR, TTR, RDN), pp. 1041–1049.
ICMLICML-2016-Papakonstantinou #on the
On the Power and Limits of Distance-Based Learning (PAP, JX0, GY), pp. 2263–2271.
ICMLICML-2016-PatriniNNC #robust
Loss factorization, weakly supervised learning and label noise robustness (GP, FN, RN, MC), pp. 708–717.
ICMLICML-2016-RahmaniA #approach #composition #matrix #performance
A Subspace Learning Approach for High Dimensional Matrix Decomposition with Efficient Column/Row Sampling (MR, GKA), pp. 1206–1214.
ICMLICML-2016-ScheinZBW #composition
Bayesian Poisson Tucker Decomposition for Learning the Structure of International Relations (AS, MZ, DMB, HMW), pp. 2810–2819.
ICMLICML-2016-SchnabelSSCJ #evaluation #recommendation
Recommendations as Treatments: Debiasing Learning and Evaluation (TS, AS, AS, NC, TJ), pp. 1670–1679.
ICMLICML-2016-ShahamCDJNCK #approach
A Deep Learning Approach to Unsupervised Ensemble Learning (US, XC, OD, AJ, BN, JTC, YK), pp. 30–39.
ICMLICML-2016-ShahG #correlation
Pareto Frontier Learning with Expensive Correlated Objectives (AS, ZG), pp. 1919–1927.
ICMLICML-2016-SinglaTK #elicitation
Actively Learning Hemimetrics with Applications to Eliciting User Preferences (AS, ST, AK0), pp. 412–420.
ICMLICML-2016-SongGC #network #sequence
Factored Temporal Sigmoid Belief Networks for Sequence Learning (JS, ZG, LC), pp. 1272–1281.
ICMLICML-2016-SuLCC #modelling #statistics #visual notation
Nonlinear Statistical Learning with Truncated Gaussian Graphical Models (QS, XL, CC, LC), pp. 1948–1957.
ICMLICML-2016-SunVBB #predict
Learning to Filter with Predictive State Inference Machines (WS0, AV, BB, JAB), pp. 1197–1205.
ICMLICML-2016-SyrgkanisKS #algorithm #performance
Efficient Algorithms for Adversarial Contextual Learning (VS, AK, RES), pp. 2159–2168.
ICMLICML-2016-ThomasB #evaluation #policy
Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning (PST, EB), pp. 2139–2148.
ICMLICML-2016-UstinovskiyFGS
Meta-Gradient Boosted Decision Tree Model for Weight and Target Learning (YU, VF, GG, PS), pp. 2692–2701.
ICMLICML-2016-WangSHHLF #architecture #network
Dueling Network Architectures for Deep Reinforcement Learning (ZW0, TS, MH, HvH, ML, NdF), pp. 1995–2003.
ICMLICML-2016-XieZX #modelling
Diversity-Promoting Bayesian Learning of Latent Variable Models (PX, JZ0, EPX), pp. 59–68.
ICMLICML-2016-XuFZ #process
Learning Granger Causality for Hawkes Processes (HX, MF, HZ), pp. 1717–1726.
ICMLICML-2016-YangCS #graph
Revisiting Semi-Supervised Learning with Graph Embeddings (ZY, WWC, RS), pp. 40–48.
ICMLICML-2016-YangZJY #online
Tracking Slowly Moving Clairvoyant: Optimal Dynamic Regret of Online Learning with True and Noisy Gradient (TY, LZ0, RJ, JY), pp. 449–457.
ICMLICML-2016-YaoK #performance #product line
Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity (QY, JTK), pp. 2645–2654.
ICMLICML-2016-YuL #multi #performance
Learning from Multiway Data: Simple and Efficient Tensor Regression (RY, YL0), pp. 373–381.
ICMLICML-2016-ZadehHS #geometry #metric
Geometric Mean Metric Learning (PZ, RH, SS), pp. 2464–2471.
ICMLICML-2016-ZarembaMJF #algorithm
Learning Simple Algorithms from Examples (WZ, TM, AJ, RF), pp. 421–429.
ICMLICML-2016-ZhaoPX #modelling
Learning Mixtures of Plackett-Luce Models (ZZ, PP, LX), pp. 2906–2914.
ICPRICPR-2016-AbdicFBARMS #approach #detection
Detecting road surface wetness from audio: A deep learning approach (IA, LF, DEB, WA, BR, EM, BWS), pp. 3458–3463.
ICPRICPR-2016-AfridiRS #framework #latency #named
L-CNN: Exploiting labeling latency in a CNN learning framework (MJA, AR, EMS), pp. 2156–2161.
ICPRICPR-2016-AgustssonTG
Regressor Basis Learning for anchored super-resolution (EA, RT, LVG), pp. 3850–3855.
ICPRICPR-2016-AhmedK #multi #taxonomy
Coupled multiple dictionary learning based on edge sharpness for single-image super-resolution (JA, RK), pp. 3838–3843.
ICPRICPR-2016-BalaziaS16a #recognition #robust
Learning robust features for gait recognition by Maximum Margin Criterion (MB, PS), pp. 901–906.
ICPRICPR-2016-BarddalGGBE #nearest neighbour
Overcoming feature drifts via dynamic feature weighted k-nearest neighbor learning (JPB, HMG, JG, AdSBJ, FE), pp. 2186–2191.
ICPRICPR-2016-BayramogluKH #classification #image #independence
Deep learning for magnification independent breast cancer histopathology image classification (NB, JK, JH), pp. 2440–2445.
ICPRICPR-2016-BorgaAL #image #segmentation
Semi-supervised learning of anatomical manifolds for atlas-based segmentation of medical images (MB, TA, ODL), pp. 3146–3149.
ICPRICPR-2016-CaoN #fine-grained #process #recognition
Exploring deep learning based solutions in fine grained activity recognition in the wild (SC, RN), pp. 384–389.
ICPRICPR-2016-CarbonneauGG #identification #multi #random #using
Witness identification in multiple instance learning using random subspaces (MAC, EG, GG), pp. 3639–3644.
ICPRICPR-2016-ChenWHF #detection #estimation
Deep learning for integrated hand detection and pose estimation (TYC, MYW, YHH, LCF), pp. 615–620.
ICPRICPR-2016-ChenZW #approach #network #summary #video
Wireless capsule endoscopy video summarization: A learning approach based on Siamese neural network and support vector machine (JC, YZ, YW0), pp. 1303–1308.
ICPRICPR-2016-DasguptaYO #sequence
Regularized dynamic Boltzmann machine with Delay Pruning for unsupervised learning of temporal sequences (SD, TY, TO), pp. 1201–1206.
ICPRICPR-2016-DevanneWDBBP #analysis
Learning shape variations of motion trajectories for gait analysis (MD, HW, MD, SB, ADB, PP), pp. 895–900.
ICPRICPR-2016-FanWH #adaptation #multi
Multi-stage multi-task feature learning via adaptive threshold (YF, YW, TZH), pp. 1666–1671.
ICPRICPR-2016-FengLL #effectiveness #using
Learning effective Gait features using LSTM (YF0, YL, JL), pp. 325–330.
ICPRICPR-2016-Forstner #modelling #semantics
A future for learning semantic models of man-made environments (WF), pp. 2475–2485.
ICPRICPR-2016-GhaderiA #network
Selective unsupervised feature learning with Convolutional Neural Network (S-CNN) (AG, VA), pp. 2486–2490.
ICPRICPR-2016-GonzalezVT #classification #invariant
Learning rotation invariant convolutional filters for texture classification (DM, MV, DT), pp. 2012–2017.
ICPRICPR-2016-GuoCL #multi
Multi-label learning with globAl densiTy fusiOn Mapping features (YG, FC, GL0), pp. 462–467.
ICPRICPR-2016-HoSSEA #approach #estimation #parametricity
A temporal deep learning approach for MR perfusion parameter estimation in stroke (KCH, FS, KVS, SES, CWA), pp. 1315–1320.
ICPRICPR-2016-HouXX0 #classification #graph
Semi-supervised learning competence of classifiers based on graph for dynamic classifier selection (CH, YX, ZX, JS0), pp. 3650–3654.
ICPRICPR-2016-HuangWLLBC #automation #clustering #estimation #parametricity
Ensemble-driven support vector clustering: From ensemble learning to automatic parameter estimation (DH, CDW, JHL, YL0, SB, YC), pp. 444–449.
ICPRICPR-2016-HuLL #named #representation #semantics #video
Video2vec: Learning semantic spatio-temporal embeddings for video representation (ShH, YL, BL), pp. 811–816.
ICPRICPR-2016-JafariKNSSWN #image #segmentation #using
Skin lesion segmentation in clinical images using deep learning (MHJ, NK, ENE, SS, SMRS, KRW, KN), pp. 337–342.
ICPRICPR-2016-JenckelBD #documentation #named #sequence
anyOCR: A sequence learning based OCR system for unlabeled historical documents (MJ, SSB, AD0), pp. 4035–4040.
ICPRICPR-2016-JiaoZ #multi #taxonomy #using
Multiple Instance Dictionary Learning using Functions of Multiple Instances (CJ, AZ), pp. 2688–2693.
ICPRICPR-2016-JohnKGNMI #modelling #performance #segmentation #using
Fast road scene segmentation using deep learning and scene-based models (VJ, KK, CG, HTN, SM, KI), pp. 3763–3768.
ICPRICPR-2016-KalraSRT #network #using
Learning opposites using neural networks (SK, AS, SR, HRT), pp. 1213–1218.
ICPRICPR-2016-KanehiraSH #multi #scalability
True-negative label selection for large-scale multi-label learning (AK, AS, TH), pp. 3673–3678.
ICPRICPR-2016-KaremF #concept #multi
Multiple Instance Learning with multiple positive and negative target concepts (AK, HF), pp. 474–479.
ICPRICPR-2016-KaurDCM #hybrid #image
Hybrid deep learning for Reflectance Confocal Microscopy skin images (PK, KJD, GOC, MCM), pp. 1466–1471.
ICPRICPR-2016-KawanishiDIMF #classification #robust
Misclassification tolerable learning for robust pedestrian orientation classification (YK, DD, II, HM, HF), pp. 486–491.
ICPRICPR-2016-KhanH #adaptation #polynomial #using
Adapting instance weights for unsupervised domain adaptation using quadratic mutual information and subspace learning (MNAK, DRH), pp. 1560–1565.
ICPRICPR-2016-KhodabandehMVMP #segmentation #video
Unsupervised learning of supervoxel embeddings for video Segmentation (MK, SM, AV, NM, EMP, SS, GM), pp. 2392–2397.
ICPRICPR-2016-Kobayashi #data-driven #image #similarity
Learning data-driven image similarity measure (TK), pp. 3679–3684.
ICPRICPR-2016-LangenkamperN #architecture #classification #detection #online #realtime
COATL - a learning architecture for online real-time detection and classification assistance for environmental data (DL, TWN), pp. 597–602.
ICPRICPR-2016-LiangSWMWSG #image #optimisation #performance #precise #retrieval #similarity
Optimizing top precision performance measure of content-based image retrieval by learning similarity function (RZL, LS, HW, JM, JJYW, QS, YG), pp. 2954–2958.
ICPRICPR-2016-LiaoQL #image #multi
Semisupervised manifold learning for color transfer between multiview images (DL, YQ, ZNL), pp. 259–264.
ICPRICPR-2016-Liu16a #classification #multi #network #scalability
Hierarchical learning for large multi-class network classification (LL), pp. 2307–2312.
ICPRICPR-2016-LoogY #consistency #empirical #nondeterminism
An empirical investigation into the inconsistency of sequential active learning (ML, YY), pp. 210–215.
ICPRICPR-2016-MaoZCLHY16a #collaboration #recognition #taxonomy
Group and collaborative dictionary pair learning for face recognition (MM, ZZ, ZC, HL, XH, RY), pp. 4107–4111.
ICPRICPR-2016-MarkusPA #optimisation
Learning local descriptors by optimizing the keypoint-correspondence criterion (NM, ISP, JA), pp. 2380–2385.
ICPRICPR-2016-MoutafisLK #metric
Regression-based metric learning (PM, ML, IAK), pp. 2700–2705.
ICPRICPR-2016-NahaW16a #segmentation #using
Object figure-ground segmentation using zero-shot learning (SN, YW0), pp. 2842–2847.
ICPRICPR-2016-Nilsson #consistency #taxonomy
Sparse coding with unity range codes and label consistent discriminative dictionary learning (MN), pp. 3186–3191.
ICPRICPR-2016-NogueiraMCSS #image #semantics
Learning to semantically segment high-resolution remote sensing images (KN, MDM, JC, WRS, JAdS), pp. 3566–3571.
ICPRICPR-2016-OhY #algorithm #graph
Enhancing label inference algorithms considering vertex importance in graph-based semi-supervised learning (BO, JY), pp. 1671–1676.
ICPRICPR-2016-OrriteRM #distance #process #sequence #using
One-shot learning of temporal sequences using a distance dependent Chinese Restaurant Process (CO, MR, CM), pp. 2694–2699.
ICPRICPR-2016-PalCGCC #multi #using
Severity grading of psoriatic plaques using deep CNN based multi-task learning (AP, AC, UG, AC, RC), pp. 1478–1483.
ICPRICPR-2016-PassalisT #embedded #retrieval #word
Bag of Embedded Words learning for text retrieval (NP, AT), pp. 2416–2421.
ICPRICPR-2016-PengRP #network #recognition #using
Learning face recognition from limited training data using deep neural networks (XP, NKR, SP), pp. 1442–1447.
ICPRICPR-2016-PironkovDD #automation #multi #recognition #speech
Speaker-aware Multi-Task Learning for automatic speech recognition (GP, SD, TD), pp. 2900–2905.
ICPRICPR-2016-QianCKNM
Deep structured-output regression learning for computational color constancy (YQ, KC0, JKK, JN, JM), pp. 1899–1904.
ICPRICPR-2016-QuachtranHS #detection #using
Detection of Intracranial Hypertension using Deep Learning (BQ, RBH, FS), pp. 2491–2496.
ICPRICPR-2016-QuLFT #effectiveness #retrieval
Improving PGF retrieval effectiveness with active learning (JQ, XL, SF, ZT), pp. 1125–1130.
ICPRICPR-2016-RaytchevKKTK
Ensemble-based local learning for high-dimensional data regression (BR, YK, MK, TT, KK), pp. 2640–2645.
ICPRICPR-2016-RedkoB #kernel
Kernel alignment for unsupervised transfer learning (IR, YB), pp. 525–530.
ICPRICPR-2016-RotaSCP #analysis #education #forensics #image #question #student
Bad teacher or unruly student: Can deep learning say something in Image Forensics analysis? (PR, ES, VC, CP), pp. 2503–2508.
ICPRICPR-2016-RoyTL #network
Context-regularized learning of fully convolutional networks for scene labeling (AR, ST, LJL), pp. 3751–3756.
ICPRICPR-2016-Saha0PV #problem #visual notation
Transfer learning for rare cancer problems via Discriminative Sparse Gaussian Graphical model (BS, SG0, DQP, SV), pp. 537–542.
ICPRICPR-2016-SaikiaSSKG #analysis #kernel #multi #using
Multiple kernel learning using data envelopment analysis and feature vector selection and projection (GS, SS, VVS, RDK, PG), pp. 520–524.
ICPRICPR-2016-ShankarDG #network
Reinforcement Learning via Recurrent Convolutional Neural Networks (TS, SKD, PG), pp. 2592–2597.
ICPRICPR-2016-ShwetaE0B #architecture #identification #interactive
A deep learning architecture for protein-protein Interaction Article identification (S, AE, SS0, PB), pp. 3128–3133.
ICPRICPR-2016-SoleymaniGF
Loss factors for learning Boosting ensembles from imbalanced data (RS, EG, GF), pp. 204–209.
ICPRICPR-2016-SousaB #consistency
Constrained Local and Global Consistency for semi-supervised learning (CARdS, GEAPAB), pp. 1689–1694.
ICPRICPR-2016-SouzaSC #comprehension #semantics
Building semantic understanding beyond deep learning from sound and vision (FDMdS, SS, GCC), pp. 2097–2102.
ICPRICPR-2016-SunBTTH #detection #locality #using
Tattoo detection and localization using region-based deep learning (ZS, JB, PT, MT, AH), pp. 3055–3060.
ICPRICPR-2016-SunHLK #multi #network #recognition
Multiple Instance Learning Convolutional Neural Networks for object recognition (MS, TXH, MCL, AKR), pp. 3270–3275.
ICPRICPR-2016-SvobodaMB #recognition
Palmprint recognition via discriminative index learning (JS, JM, MMB), pp. 4232–4237.
ICPRICPR-2016-TairaTO #robust #synthesis
Robust feature matching by learning descriptor covariance with viewpoint synthesis (HT, AT, MO), pp. 1953–1958.
ICPRICPR-2016-TounsiMA #framework #recognition #taxonomy
Supervised dictionary learning in BoF framework for Scene Character recognition (MT, IM, AMA), pp. 3987–3992.
ICPRICPR-2016-Triantafyllidou #detection #incremental #network
Face detection based on deep convolutional neural networks exploiting incremental facial part learning (DT, AT), pp. 3560–3565.
ICPRICPR-2016-TzelepiT #image #retrieval
Exploiting supervised learning for finetuning deep CNNs in content based image retrieval (MT, AT), pp. 2918–2923.
ICPRICPR-2016-UlmB
Learning tubes (MU, NB), pp. 3655–3660.
ICPRICPR-2016-WangHG #classification #novel
A novel fingerprint classification method based on deep learning (RW, CH, TG), pp. 931–936.
ICPRICPR-2016-WangLLCL #visual notation
Visual tracking via sparsity pattern learning (YW, YL0, ZL, LFC, HL), pp. 2716–2721.
ICPRICPR-2016-WangZWGSH #identification #metric #similarity
Contextual Similarity Regularized Metric Learning for person re-identification (JW0, JZ, ZW, CG, NS, RH0), pp. 2048–2053.
ICPRICPR-2016-WeiLSKM #taxonomy
Joint learning dictionary and discriminative features for high dimensional data (XW, YL, HS, MK, YLM), pp. 366–371.
ICPRICPR-2016-WichtFH #keyword
Deep learning features for handwritten keyword spotting (BW, AF0, JH), pp. 3434–3439.
ICPRICPR-2016-WuWJ #multi #recognition
Multiple Facial Action Unit recognition by learning joint features and label relations (SW, SW, QJ), pp. 2246–2251.
ICPRICPR-2016-XueB #multi
Multi-task learning for one-class SVM with additional new features (YX, PB), pp. 1571–1576.
ICPRICPR-2016-XuSARS #multi #recognition #retrieval #taxonomy
Multi-Paced Dictionary Learning for cross-domain retrieval and recognition (DX0, JS, XAP, ER0, NS), pp. 3228–3233.
ICPRICPR-2016-XuT #3d #network
Beam search for learning a deep Convolutional Neural Network of 3D shapes (XX, ST), pp. 3506–3511.
ICPRICPR-2016-YangJPL #image #taxonomy
Enhancement of Low Light Level Images with coupled dictionary learning (JY, XJ, CP, CLL), pp. 751–756.
ICPRICPR-2016-YangL #nondeterminism #using
Active learning using uncertainty information (YY, ML), pp. 2646–2651.
ICPRICPR-2016-ZhaoZWJ #multi
Multilingual articulatory features augmentation learning (YZ, RZ, XW0, QJ), pp. 2895–2899.
ICPRICPR-2016-ZhengYYY #feature model #robust
Robust unsupervised feature selection by nonnegative sparse subspace learning (WZ, HY, JY0, JY), pp. 3615–3620.
ICPRICPR-2016-ZhuWLZ #gender #lightweight #network #recognition
Learning a lightweight deep convolutional network for joint age and gender recognition (LZ, KW, LL, LZ0), pp. 3282–3287.
KDDKDD-2016-BorisyukKSZ #documentation #framework #modelling #named #query
CaSMoS: A Framework for Learning Candidate Selection Models over Structured Queries and Documents (FB, KK, DS, BZ), pp. 441–450.
KDDKDD-2016-ChangZTYCHH #network #streaming
Positive-Unlabeled Learning in Streaming Networks (SC, YZ0, JT, DY, YC, MAHJ, TSH), pp. 755–764.
KDDKDD-2016-ChoiBSCTBTS #concept #multi #representation
Multi-layer Representation Learning for Medical Concepts (EC, MTB, ES, CC, MT, JB, JTS, JS), pp. 1495–1504.
KDDKDD-2016-FeiW0 #cumulative #information management
Learning Cumulatively to Become More Knowledgeable (GF, SW, BL0), pp. 1565–1574.
KDDKDD-2016-Freitas #composition #network
Learning to Learn and Compositionality with Deep Recurrent Neural Networks: Learning to Learn and Compositionality (NdF), p. 3.
KDDKDD-2016-GroverL #named #network #scalability
node2vec: Scalable Feature Learning for Networks (AG, JL), pp. 855–864.
KDDKDD-2016-Herbrich #modelling #scalability
Learning Sparse Models at Scale (RH), p. 407.
KDDKDD-2016-HuoNH #effectiveness #metric #robust #using
Robust and Effective Metric Learning Using Capped Trace Norm: Metric Learning via Capped Trace Norm (ZH, FN, HH), pp. 1605–1614.
KDDKDD-2016-LiGHZ #recommendation
Point-of-Interest Recommendations: Learning Potential Check-ins from Friends (HL, YG, RH, HZ), pp. 975–984.
KDDKDD-2016-LiMLFDYLQ #big data #data analysis #performance #scalability #taxonomy
Scalable Fast Rank-1 Dictionary Learning for fMRI Big Data Analysis (XL0, MM, BL, MSF, ID, JY, TL, SQ), pp. 511–519.
KDDKDD-2016-LinXBJZ #feature model #interactive #multi
Multi-Task Feature Interaction Learning (KL, JX, IMB, SJ, JZ), pp. 1735–1744.
KDDKDD-2016-LiWYR #analysis #multi
A Multi-Task Learning Formulation for Survival Analysis (YL, JW0, JY, CKR), pp. 1715–1724.
KDDKDD-2016-LynchAA #image #multimodal #rank #scalability #semantics #visual notation
Images Don't Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank (CL, KA, JA), pp. 541–548.
KDDKDD-2016-NingMRR #modelling #multi
Modeling Precursors for Event Forecasting via Nested Multi-Instance Learning (YN, SM, HR, NR), pp. 1095–1104.
KDDKDD-2016-PetitjeanW #modelling #scalability #visual notation
Scalable Learning of Graphical Models (FP, GIW), pp. 2131–2132.
KDDKDD-2016-ReddyLBJ #bound #scheduling
Unbounded Human Learning: Optimal Scheduling for Spaced Repetition (SR, IL, SB, TJ), pp. 1815–1824.
KDDKDD-2016-Schneider #embedded #optimisation
Bayesian Optimization and Embedded Learning Systems (JS), p. 413.
KDDKDD-2016-XuT0 #multi #robust
Robust Extreme Multi-label Learning (CX0, DT, CX0), pp. 1275–1284.
KDDKDD-2016-ZhaiCZZ #named #network #online
DeepIntent: Learning Attentions for Online Advertising with Recurrent Neural Networks (SZ, KhC, RZ, Z(Z), pp. 1295–1304.
KDDKDD-2016-ZhangYS #online #symmetry
Online Asymmetric Active Learning with Imbalanced Data (XZ, TY, PS), pp. 2055–2064.
KDDKDD-2016-ZhangZL #ambiguity
Partial Label Learning via Feature-Aware Disambiguation (MLZ, BBZ, XYL), pp. 1335–1344.
KDDKDD-2016-ZhangZWX
Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising (WZ0, TZ, JW0, JX), pp. 665–674.
KDDKDD-2016-ZhaoYCLR #multi
Hierarchical Incomplete Multi-source Feature Learning for Spatiotemporal Event Forecasting (LZ0, JY, FC0, CTL, NR), pp. 2085–2094.
KDDKDD-2016-ZhengYC #invariant #performance #taxonomy
Efficient Shift-Invariant Dictionary Learning (GZ, YY, JGC), pp. 2095–2104.
MoDELSMoDELS-2016-BatotS #framework #testing #unification
A generic framework for model-set selection for the unification of testing and learning MDE tasks (EB, HAS), pp. 374–384.
PLDIPLDI-2016-HeuleS0A #automation #set #synthesis
Stratified synthesis: automatically learning the x86-64 instruction set (SH, ES, RS0, AA), pp. 237–250.
PLDIPLDI-2016-ZhuPJ #automation #specification
Automatically learning shape specifications (HZ0, GP, SJ), pp. 491–507.
POPLPOPL-2016-0001NMR #invariant #using
Learning invariants using decision trees and implication counterexamples (PG0, DN, PM, DR), pp. 499–512.
POPLPOPL-2016-LongR #automation #generative
Automatic patch generation by learning correct code (FL, MR), pp. 298–312.
POPLPOPL-2016-RaychevBVK #semistructured data #source code
Learning programs from noisy data (VR, PB, MTV, AK0), pp. 761–774.
SASSAS-2016-HeoOY #clustering #static analysis
Learning a Variable-Clustering Strategy for Octagon from Labeled Data Generated by a Static Analysis (KH, HO, HY), pp. 237–256.
ASEASE-2016-ChenCXX #retrieval
Learning a dual-language vector space for domain-specific cross-lingual question retrieval (GC, CC, ZX, BX), pp. 744–755.
ASEASE-2016-KrishnaMF #automation
Too much automation? the bellwether effect and its implications for transfer learning (RK, TM, WF), pp. 122–131.
ASEASE-2016-QiJZWC #estimation #obfuscation #privacy #subclass
Privacy preserving via interval covering based subclass division and manifold learning based bi-directional obfuscation for effort estimation (FQ, XYJ, XZ, FW, LC), pp. 75–86.
ASEASE-2016-WhiteTVP #clone detection #detection
Deep learning code fragments for code clone detection (MW, MT, CV, DP), pp. 87–98.
FSEFSE-2016-BusjaegerX #case study #industrial
Learning for test prioritization: an industrial case study (BB, TX), pp. 975–980.
FSEFSE-2016-GuZZK #api
Deep API learning (XG, HZ0, DZ, SK0), pp. 631–642.
FSEFSE-2016-NguyenHCNMRND #api #fine-grained #recommendation #statistics #using
API code recommendation using statistical learning from fine-grained changes (ATN0, MH, MC, HAN, LM, ER, TNN, DD), pp. 511–522.
ICSE-2016-NguyenPVN #api #approach #bytecode #statistics
Learning API usages from bytecode: a statistical approach (TTN, HVP, PMV, TTN), pp. 416–427.
ICSE-2016-WangLT #automation #fault #predict #semantics
Automatically learning semantic features for defect prediction (SW0, TL, LT0), pp. 297–308.
CASECASE-2016-LangsfeldKKG #modelling #online
Robotic bimanual cleaning of deformable objects with online learning of part and tool models (JDL, AMK, KNK, SKG), pp. 626–632.
CASECASE-2016-LaskeyLCGHPDG #using
Robot grasping in clutter: Using a hierarchy of supervisors for learning from demonstrations (ML, JL, CC, DVG, WYSH, FTP, ADD, KG), pp. 827–834.
CASECASE-2016-LiuS #kernel #online #recognition #taxonomy
Online kernel dictionary learning for object recognition (HL0, FS), pp. 268–273.
CAVCAV-2016-Fiterau-Brostean #implementation #model checking
Combining Model Learning and Model Checking to Analyze TCP Implementations (PFB, RJ, FWV), pp. 454–471.
CAVCAV-2016-SantolucitoZP #automation #probability
Probabilistic Automated Language Learning for Configuration Files (MS, EZ, RP), pp. 80–87.
CSLCSL-2016-Silva #algebra
Coalgebraic Learning (AS0), p. 1.
ICTSSICTSS-2016-ReichstallerEKR #testing #using
Risk-Based Interoperability Testing Using Reinforcement Learning (AR, BE, AK, WR, MG), pp. 52–69.
ECSAECSA-2015-KiwelekarW #architecture
Learning Objectives for a Course on Software Architecture (AWK, HSW), pp. 169–180.
DRRDRR-2015-FuLLQT #diagrams #multi #retrieval
A diagram retrieval method with multi-label learning (SF, XL, LL, JQ, ZT).
HTHT-2015-KirchnerR #collaboration #in the cloud
Collaborative Learning in the Cloud: A Cross-Cultural Perspective of Collaboration (KK, LR), pp. 333–336.
HTHT-2015-MishraDBS #analysis #incremental #sentiment
Sentiment Analysis with Incremental Human-in-the-Loop Learning and Lexical Resource Customization (SM, JD, JB, ES), pp. 323–325.
JCDLJCDL-2015-KananZMF #big data #problem #summary
Big Data Text Summarization for Events: A Problem Based Learning Course (TK, XZ, MM, EAF), pp. 87–90.
SIGMODSIGMOD-2015-KumarNP #linear #modelling #normalisation
Learning Generalized Linear Models Over Normalized Data (AK, JFN, JMP), pp. 1969–1984.
VLDBVLDB-2015-QianGJ #adaptation #comparison
Learning User Preferences By Adaptive Pairwise Comparison (LQ, JG, HVJ), pp. 1322–1333.
EDMEDM-2015-BergnerKP #analysis #challenge
Methodological Challenges in the Analysis of MOOC Data for Exploring the Relationship between Discussion Forum Views and Learning Outcomes (YB, DK, DEP), pp. 234–241.
EDMEDM-2015-BhatnagarDWLDLC #analysis
An Analysis of Peer-submitted and Peer-reviewed Answer Rationales in a Web-based Peer Instruction Based Learning Environment (SB, MCD, CW, NL, MD, KL, ESC), pp. 456–459.
EDMEDM-2015-BumbacherSWB #behaviour #comprehension #concept #development #how #physics
Learning Environments and Inquiry Behaviors in Science Inquiry Learning: How Their Interplay Affects the Development of Conceptual Understanding in Physics (EB, SS, MW, PB), pp. 61–68.
EDMEDM-2015-ChandrasekaranK
Learning Instructor Intervention from MOOC Forums: Early Results and Issues (MKC, MYK, BCYT, KR), pp. 218–225.
EDMEDM-2015-ChenBD #detection
Video-Based Affect Detection in Noninteractive Learning Environments (YC, NB, SKD), pp. 440–443.
EDMEDM-2015-DoroudiHAB #comprehension #how #induction #refinement #robust #towards
Towards Understanding How to Leverage Sense-making, Induction/Refinement and Fluency to Improve Robust Learning (SD, KH, VA, EB), pp. 376–379.
EDMEDM-2015-Fancsali #algebra #behaviour #modelling #using #visual notation
Confounding Carelessness? Exploring Causal Relationships Between Carelessness, Affect, Behavior, and Learning in Cognitive Tutor Algebra Using Graphical Causal Models (SF), pp. 508–511.
EDMEDM-2015-JugoKS #optimisation #tool support #visual notation
Integrating a Web-based ITS with DM tools for Providing Learning Path Optimization and Visual Analytics (IJ, BK, VS), pp. 574–575.
EDMEDM-2015-KeshtkarCKC #interactive #student
Analyzing Students' Interaction Based on Their Response to Determine Their Learning Outcomes (FK, JC, BK, AC), pp. 588–589.
EDMEDM-2015-LewkowZRE #education #framework #platform #scalability #streaming #towards
Learning Analytics Platform. Towards an Open Scalable Streaming Solution for Education (NL, NLZ, MR, AE), pp. 460–463.
EDMEDM-2015-LiuK #clustering #fault #student
Variations in Learning Rate: Student Clustering Based on Systematic Residual Error Patterns Across Practice Opportunities (RL0, KRK), pp. 420–423.
EDMEDM-2015-MacLellanLK #modelling #student
Accounting for Slipping and Other False Negatives in Logistic Models of Student Learning (CJM, RL0, KRK), pp. 53–60.
EDMEDM-2015-MostowGEG #automation #identification #word
Automatic Identification of Nutritious Contexts for Learning Vocabulary Words (JM, DG, RE, RG), pp. 266–273.
EDMEDM-2015-Olivares-Rodriguez #mining #student #word
Learning the Creative Potential of Students by Mining a Word Association Task (COR, MG), pp. 400–403.
EDMEDM-2015-OlsenAR #collaboration #performance #predict #student
Predicting Student Performance In a Collaborative Learning Environment (JKO, VA, NR), pp. 211–217.
EDMEDM-2015-Ostrow #adaptation #motivation #student
Enhancing Student Motivation and Learning Within Adaptive Tutors (KO), pp. 668–670.
EDMEDM-2015-Pedro #student
Assessing the Roles of Student Engagement and Academic Emotions within Middle School Computer-Based Learning in College-Going Pathways (MOSP), pp. 656–658.
EDMEDM-2015-Pelanek15b #modelling #question #student
Modeling Student Learning: Binary or Continuous Skill? (RP), pp. 560–561.
EDMEDM-2015-Rasanen #education
Educational Neuroscience as a Tool to Understand Learning and Learning Disabilities in Mathematics (PR), p. 7.
EDMEDM-2015-Rau #equation #how #why
Why Do the Rich Get Richer? A Structural Equation Model to Test How Spatial Skills Affect Learning with Representations (MAR), pp. 350–357.
EDMEDM-2015-RitterF
Carnegie Learning's Cognitive Tutor (SR, SF), pp. 633–634.
EDMEDM-2015-RoweBA #game studies
Strategic Game Moves Mediate Implicit Science Learning (ER, RSB, JAC), pp. 432–435.
EDMEDM-2015-SiemensBG #graph
Personal Knowledge/Learning Graph (GS, RSB, DG), p. 5.
EDMEDM-2015-Streeter #modelling
Mixture Modeling of Individual Learning Curves (MJS), pp. 45–52.
EDMEDM-2015-Tibbles #data mining #mining
Exploring the Impact of Spacing in Mathematics Learning through Data Mining (RT), pp. 590–591.
EDMEDM-2015-Truong #adaptation
Integrating Learning Styles into Adaptive e-Learning System (HMT), pp. 645–647.
EDMEDM-2015-VossSMS #approach #dataset #matrix
A Transfer Learning Approach for Applying Matrix Factorization to Small ITS Datasets (LV, CS, CM, LST), pp. 372–375.
EDMEDM-2015-WangYWKR #behaviour #how #student
Investigating How Student's Cognitive Behavior in MOOC Discussion Forum Affect Learning Gains (XW0, DY, MW, KRK, CPR), pp. 226–233.
EDMEDM-2015-YeKSB #behaviour #multi #process #sequence
Learning Behavior Characterization with Multi-Feature, Hierarchical Activity Sequences (CY, JSK, JRS, GB), pp. 380–383.
EDMEDM-2015-ZhengVP #composition #performance
The Impact of Small Learning Group Composition on Drop-Out Rate and Learning Performance in a MOOC (ZZ, TV, NP), pp. 500–503.
ITiCSEITiCSE-2015-AlshammariAH #adaptation #education #security
The Impact of Learning Style Adaptivity in Teaching Computer Security (MA, RA, RJH), pp. 135–140.
ITiCSEITiCSE-2015-Annamaa #ide #programming #python
Thonny, : a Python IDE for Learning Programming (AA), p. 343.
ITiCSEITiCSE-2015-Cukierman #predict #process #student
Predicting Success in University First Year Computing Science Courses: The Role of Student Participation in Reflective Learning Activities and in I-clicker Activities (DC), pp. 248–253.
ITiCSEITiCSE-2015-Hamilton #education
Learning and Teaching Computing Sustainability (MH), p. 338.
ITiCSEITiCSE-2015-Harms #community #source code
Department Programs to Encourage and Support Service Learning and Community Engagement (DEH), p. 330.
ITiCSEITiCSE-2015-MartinezGB #comparison #concept #framework #multi #platform #programming
A Comparison of Preschool and Elementary School Children Learning Computer Science Concepts through a Multilanguage Robot Programming Platform (MCM, MJG, LB), pp. 159–164.
ITiCSEITiCSE-2015-QuinsonO #education #programming
A Teaching System to Learn Programming: the Programmer’s Learning Machine (MQ, GO), pp. 260–265.
ITiCSEITiCSE-2015-SantosSFN #agile #development #framework #mobile
Combining Challenge-Based Learning and Scrum Framework for Mobile Application Development (ARS, AS, PF, MN), pp. 189–194.
ITiCSEITiCSE-2015-SettleLS #community
A Computer Science Linked-courses Learning Community (AS, JL, TS), pp. 123–128.
ITiCSEITiCSE-2015-TarmazdiVSFF #using #visualisation
Using Learning Analytics to Visualise Computer Science Teamwork (HT, RV, CS, KEF, NJGF), pp. 165–170.
ITiCSEITiCSE-2015-Tudor #optimisation #query #xml
Virtual Learning Laboratory about Query Optimization against XML Data (LNT), p. 348.
SIGITESIGITE-2015-BradyWGAW #low cost #programmable #smarttech
The CCL-Parallax Programmable Badge: Learning with Low-Cost, Communicative Wearable Computers (CEB, DW, KG, GA, UW), pp. 139–144.
SIGITESIGITE-2015-Miller #evaluation #usability
Usability Evaluation: Learning When Method Findings Converge-And When They Don’t (CSM), pp. 167–172.
SIGITESIGITE-2015-MillerSL #object-oriented #programming #python #testing #towards
Learning Object-Oriented Programming in Python: Towards an Inventory of Difficulties and Testing Pitfalls (CSM, AS, JL), pp. 59–64.
SIGITESIGITE-2015-NicolaiNHW #education #industrial
Experiential Learning Business/Industry and Education Wants and Needs (BN, DN, CHJ, CW), pp. 95–96.
SIGITESIGITE-2015-SettleLS #community #development
Evaluating a Linked-courses Learning Community for Development Majors (AS, JL, TS), pp. 127–132.
ICSMEICSME-2015-CorleyDK #feature model #using
Exploring the use of deep learning for feature location (CSC, KD, NAK), pp. 556–560.
MSRMSR-2015-WhiteVVP #repository #towards
Toward Deep Learning Software Repositories (MW, CV, MLV, DP), pp. 334–345.
LATALATA-2015-Yoshinaka #boolean grammar #grammar inference
Learning Conjunctive Grammars and Contextual Binary Feature Grammars (RY), pp. 623–635.
SEFMSEFM-2015-Muhlberg0DLP #source code #verification
Learning Assertions to Verify Linked-List Programs (JTM, DHW, MD, GL, FP), pp. 37–52.
ICFPICFP-2015-ZhuNJ #refinement
Learning refinement types (HZ, AVN, SJ), pp. 400–411.
AIIDEAIIDE-2015-UriarteO #automation #game studies #modelling
Automatic Learning of Combat Models for RTS Games (AU, SO), pp. 212–219.
CHI-PLAYCHI-PLAY-2015-CakirCAL #game studies
An Optical Brain Imaging Study on the Improvements in Mathematical Fluency from Game-based Learning (MPÇ, NAÇ, HA, FJL), pp. 209–219.
CHI-PLAYCHI-PLAY-2015-EagleRHBBAE #interactive #network
Measuring Implicit Science Learning with Networks of Player-Game Interactions (ME, ER, DH, RB, TB, JAC, TE), pp. 499–504.
CHI-PLAYCHI-PLAY-2015-HarpsteadA #analysis #design #education #empirical #game studies #using
Using Empirical Learning Curve Analysis to Inform Design in an Educational Game (EH, VA), pp. 197–207.
CoGCIG-2015-DannZT #approach
An improved approach to reinforcement learning in Computer Go (MD, FZ, JT), pp. 169–176.
CoGCIG-2015-DobreL #game studies #mining #online
Online learning and mining human play in complex games (MSD, AL), pp. 60–67.
CoGCIG-2015-GlavinM #clustering #game studies
Learning to shoot in first person shooter games by stabilizing actions and clustering rewards for reinforcement learning (FGG, MGM), pp. 344–351.
CoGCIG-2015-HuangW
Learning overtaking and blocking skills in simulated car racing (HHH, TW), pp. 439–445.
CoGCIG-2015-IvanovoRZL #monte carlo
Combining Monte Carlo tree search and apprenticeship learning for capture the flag (JI, WLR, FZ, XL0), pp. 154–161.
CoGCIG-2015-KamekoMT #game studies #generative
Learning a game commentary generator with grounded move expressions (HK, SM, YT), pp. 177–184.
CoGCIG-2015-NetoJ #automation #elicitation #named
ACE-RL-Checkers: Improving automatic case elicitation through knowledge obtained by reinforcement learning in player agents (HCN, RMdSJ), pp. 328–335.
CoGCIG-2015-QuiterioPM #approach #geometry
A reinforcement learning approach for the circle agent of geometry friends (JQ, RP, FSM), pp. 423–430.
CoGCIG-2015-Yao #game studies #speech
Keynote speech I: Co-evolutionary learning in game-playing (XY0), p. 16.
FDGFDG-2015-KaoH15a #game studies #named
Mazzy: A STEM Learning Game (DK, DFH).
FDGFDG-2015-KaoH15b #game studies #using
Exploring the Construction, Play, Use of Virtual Identities in a STEM Learning Game (DK, DFH).
FDGFDG-2015-PackardO #behaviour #metric #similarity
Learning Behavior form Demonstration in Minecraft via Symbolic Similarity Measures (BP, SO).
FDGFDG-2015-Pirker #collaboration
Learning in Collaborative and Motivational Virtual Environments (JP).
FDGFDG-2015-ShakerAS #modelling
Active Learning for Player Modeling (NS, MAZ, MS).
FDGFDG-2015-SummervilleBMJ #data-driven #game studies #generative
The Learning of Zelda: Data-Driven Level Generation for Action Role Playing Games (AS, MB, MM, AJ).
CoGVS-Games-2015-AsadipourDC #approach #game studies
A Game-Based Training Approach to Enhance Human Hand Motor Learning and Control Abilities (AA0, KD, AC), pp. 1–6.
CoGVS-Games-2015-DiazDHS #development #game studies #multi #online #using #video
Explicit Fun, Implicit Learning in Multiplayer Online Battle Arenas: Methodological Proposal for Studying the Development of Cognitive Skills Using Commercial Video Games (CMCD, BD, HH, JWS), pp. 1–3.
CoGVS-Games-2015-PanzoliPL #communication #game studies
Communication and Knowledge Sharing in an Immersive Learning Game (DP, CPL, PL), pp. 1–8.
CoGVS-Games-2015-YohannisP #algorithm #gamification #sorting #visualisation
Sort Attack: Visualization and Gamification of Sorting Algorithm Learning (AY, YP), pp. 1–8.
CHICHI-2015-BerardR #assessment #human-computer #similarity #towards
The Transfer of Learning as HCI Similarity: Towards an Objective Assessment of the Sensory-Motor Basis of Naturalness (FB, ARC), pp. 1315–1324.
CHICHI-2015-DavisK #student
Investigating High School Students’ Perceptions of Digital Badges in Afterschool Learning (KD, EK), pp. 4043–4046.
CHICHI-2015-KardanC #adaptation #evaluation #interactive #simulation
Providing Adaptive Support in an Interactive Simulation for Learning: An Experimental Evaluation (SK, CC), pp. 3671–3680.
CHICHI-2015-Noble #self
Resilience Ex Machina: Learning a Complex Medical Device for Haemodialysis Self-Treatment (PJN), pp. 4147–4150.
CHICHI-2015-NoroozMJMF #approach #named #smarttech #visualisation
BodyVis: A New Approach to Body Learning Through Wearable Sensing and Visualization (LN, MLM, AJ, BM, JEF), pp. 1025–1034.
CHICHI-2015-ShovmanBSS #3d #interface
Twist and Learn: Interface Learning in 3DOF Exploration of 3D Scatterplots (MMS, JLB, AS, KCSB), pp. 313–316.
CHICHI-2015-StrohmayerCB #people
Exploring Learning Ecologies among People Experiencing Homelessness (AS, RC, MB), pp. 2275–2284.
CHICHI-2015-Walther-FranksS #design #game studies
Robots, Pancakes, and Computer Games: Designing Serious Games for Robot Imitation Learning (BWF, JS, PS, AH, MB, RM), pp. 3623–3632.
CHICHI-2015-YannierKH #effectiveness #game studies #physics #question #tablet
Learning from Mixed-Reality Games: Is Shaking a Tablet as Effective as Physical Observation? (NY, KRK, SEH), pp. 1045–1054.
CSCWCSCW-2015-CoetzeeLFHH #interactive #scalability
Structuring Interactions for Large-Scale Synchronous Peer Learning (DC, SL, AF, BH, MAH), pp. 1139–1152.
CSCWCSCW-2015-DornSS #collaboration
Piloting TrACE: Exploring Spatiotemporal Anchored Collaboration in Asynchronous Learning (BD, LBS, AS), pp. 393–403.
CSCWCSCW-2015-JiaWXRC #behaviour #online #privacy #process
Risk-taking as a Learning Process for Shaping Teen’s Online Information Privacy Behaviors (HJ, PJW, HX, MBR, JMC), pp. 583–599.
HCIDHM-HM-2015-NishimuraK #case study
A Study on Learning Effects of Marking with Highlighter Pen (HN, NK), pp. 357–367.
HCIDUXU-DD-2015-KremerL #design #experience #research #user interface
Learning from Experience Oriented Disciplines for User Experience Design — A Research Agenda (SK, UL), pp. 306–314.
HCIDUXU-IXD-2015-BorgesonFKTR #energy #visualisation
Learning from Hourly Household Energy Consumption: Extracting, Visualizing and Interpreting Household Smart Meter Data (SB, JAF, JK, CWT, RR), pp. 337–345.
HCIDUXU-IXD-2015-BorumBB #design #lessons learnt
Designing with Young Children: Lessons Learned from a Co-creation of a Technology-Enhanced Playful Learning Environment (NB, EPB, ALB), pp. 142–152.
HCIDUXU-IXD-2015-Celi #experience #modelling #risk management #user interface
Application of Dashboards and Scorecards for Learning Models IT Risk Management: A User Experience (EC), pp. 153–165.
HCIDUXU-UI-2015-BeltranUPSSSPCA #design #game studies
Inclusive Gaming Creation by Design in Formal Learning Environments: “Girly-Girls” User Group in No One Left Behind (MEB, YU, AP, CS, WS, BS, SdlRP, MFCU, MTA), pp. 153–161.
HCIHCI-DE-2015-BakkeB #developer #proximity
The Closer the Better: Effects of Developer-User Proximity for Mutual Learning (SB, TB), pp. 14–26.
HCIHCI-IT-2015-TadayonMGRZLGP #case study #interactive
Interactive Motor Learning with the Autonomous Training Assistant: A Case Study (RT, TLM, MG, PMRF, JZ, ML, MG, SP), pp. 495–506.
HCIHIMI-IKC-2015-AraiTA #development
Development of a Learning Support System for Class Structure Mapping Based on Viewpoint (TA, TT, TA), pp. 285–293.
HCIHIMI-IKC-2015-HasegawaD #approach #framework #platform #ubiquitous
A Ubiquitous Lecture Archive Learning Platform with Note-Centered Approach (SH, JD), pp. 294–303.
HCIHIMI-IKC-2015-HayashiH #analysis #concept #process
Analysis of the Relationship Between Metacognitive Ability and Learning Activity with Kit-Build Concept Map (YH, TH), pp. 304–312.
HCIHIMI-IKC-2015-Iwata #difference
Method to Generate an Operation Learning Support System by Shortcut Key Differences in Similar Software (HI), pp. 332–340.
HCIHIMI-IKC-2015-KimitaMMNIS #education
Learning State Model for Value Co-Creative Education Services (KK, KM, SM, YN, TI, YS), pp. 341–349.
HCIHIMI-IKC-2015-WatanabeTA #abstraction #development #source code
Development of a Learning Support System for Reading Source Code by Stepwise Abstraction (KW, TT, TA), pp. 387–394.
HCIHIMI-IKD-2015-WinterSTMCSVS #question #student
Learning to Manage NextGen Environments: Do Student Controllers Prefer to Use Datalink or Voice? (AW, JS, YT, AM, SC, KS, KPLV, TZS), pp. 661–667.
HCILCT-2015-BoonbrahmKB #artificial reality #student #using
Using Augmented Reality Technology in Assisting English Learning for Primary School Students (SB, CK, PB), pp. 24–32.
HCILCT-2015-DuA #artificial reality #design #evaluation
Design and Evaluation of a Learning Assistant System with Optical Head-Mounted Display (OHMD) (XD, AA), pp. 75–86.
HCILCT-2015-FonsecaRVG #3d #education
From Formal to Informal 3D Learning. Assesment of Users in the Education (DF, ER, FV, ODG), pp. 460–469.
HCILCT-2015-GoelMTPSYD #collaboration #named #student
CATALYST: Technology-Assisted Collaborative and Experiential Learning for School Students (VG, UM, ST, RMP, KS, KY, OD), pp. 482–491.
HCILCT-2015-GonzalezHGS #interactive #student #tool support
Exploring Student Interactions: Learning Analytics Tools for Student Tracking (MÁCG, ÁHG, FJGP, MLSE), pp. 50–61.
HCILCT-2015-HoffmannPLSMJ #student
Enhancing the Learning Success of Engineering Students by Virtual Experiments (MH, LP, LL, KS, TM, SJ), pp. 394–405.
HCILCT-2015-KimAKW #game studies
H-Treasure Hunt: A Location and Object-Based Serious Game for Cultural Heritage Learning at a Historic Site (HK, SA, SK, WW), pp. 561–572.
HCILCT-2015-KimCD #artificial reality #simulation
The Learning Effect of Augmented Reality Training in a Computer-Based Simulation Environment (JHK, TC, WD), pp. 406–414.
HCILCT-2015-KlemkeKLS #education #game studies #mobile #multi
Transferring an Educational Board Game to a Multi-user Mobile Learning Game to Increase Shared Situational Awareness (RK, SK, HL, MS), pp. 583–594.
HCILCT-2015-LambropoulosMFK #design #experience #ontology
Ontological Design to Support Cognitive Plasticity for Creative Immersive Experience in Computer Aided Learning (NL, IM, HMF, IAK), pp. 261–270.
HCILCT-2015-OrehovackiB #game studies #programming #quality
Inspecting Quality of Games Designed for Learning Programming (TO, SB), pp. 620–631.
HCILCT-2015-RodriguezOD #hybrid #recommendation #repository #student
A Student-Centered Hybrid Recommender System to Provide Relevant Learning Objects from Repositories (PAR, DAO, NDD), pp. 291–300.
HCILCT-2015-ShimizuO #design #implementation #novel #word
Design and Implementation of Novel Word Learning System “Überall” (RS, KO), pp. 148–159.
HCILCT-2015-TamuraTHN #generative #wiki
Generating Quizzes for History Learning Based on Wikipedia Articles (YT, YT, YH, YIN), pp. 337–346.
HCILCT-2015-VielRTP #design #interactive #multi
Design Solutions for Interactive Multi-video Multimedia Learning Objects (CCV, KRHR, CACT, MdGCP), pp. 160–171.
HCILCT-2015-YusoffK #design #game studies #interactive #persuasion
Game Rhetoric: Interaction Design Model of Persuasive Learning for Serious Games (ZY, AK), pp. 644–654.
ICEISICEIS-v1-2015-PecliGPMFTTDFCG #predict #problem #reduction
Dimensionality Reduction for Supervised Learning in Link Prediction Problems (AP, BG, CCP, CM, FF, FT, JT, MVD, SF, MCC, RRG), pp. 295–302.
ICEISICEIS-v1-2015-RibeiroTWBE
A Learning Model for Intelligent Agents Applied to Poultry Farming (RR, MT, ALW, APB, FE), pp. 495–503.
ICEISICEIS-v1-2015-SouzaBGBE #online
Applying Ensemble-based Online Learning Techniques on Crime Forecasting (AJdS, APB, HMG, JPB, FE), pp. 17–24.
CIKMCIKM-2015-BizidNBFD #identification #microblog #sequence
Identification of Microblogs Prominent Users during Events by Learning Temporal Sequences of Features (IB, NN, PB, SF, AD), pp. 1715–1718.
CIKMCIKM-2015-BuchA #approximate #string #using
Approximate String Matching by End-Users using Active Learning (LB, AA0), pp. 93–102.
CIKMCIKM-2015-CaoLX #graph #named
GraRep: Learning Graph Representations with Global Structural Information (SC, WL0, QX), pp. 891–900.
CIKMCIKM-2015-HaoZHM #data type #online #similarity
Learning Relative Similarity from Data Streams: Active Online Learning Approaches (SH, PZ, SCHH, CM), pp. 1181–1190.
CIKMCIKM-2015-HeLJ0 #graph
Learning to Represent Knowledge Graphs with Gaussian Embedding (SH, KL0, GJ, JZ0), pp. 623–632.
CIKMCIKM-2015-HongWW #classification #clustering
Clustering-based Active Learning on Sensor Type Classification in Buildings (DH, HW, KW), pp. 363–372.
CIKMCIKM-2015-JinLZHH #distributed #multi #online
Collaborating between Local and Global Learning for Distributed Online Multiple Tasks (XJ0, PL0, FZ, JH, QH), pp. 113–122.
CIKMCIKM-2015-JinZPDLH #classification #multi #semantics
Heterogeneous Multi-task Semantic Feature Learning for Classification (XJ0, FZ, SJP, CD, PL0, QH), pp. 1847–1850.
CIKMCIKM-2015-KangLHWNXP #rank #similarity
Cross-Modal Similarity Learning: A Low Rank Bilinear Formulation (CK, SL, YH, JW, WN, SX, CP), pp. 1251–1260.
CIKMCIKM-2015-KholghiSZN #case study #information management #query
External Knowledge and Query Strategies in Active Learning: a Study in Clinical Information Extraction (MK, LS, GZ, ANN), pp. 143–152.
CIKMCIKM-2015-LiuTL #matrix #multi #named #scalability
MF-Tree: Matrix Factorization Tree for Large Multi-Class Learning (LL, PNT, XL), pp. 881–890.
CIKMCIKM-2015-MetrikovPA #crowdsourcing #integration #rank
Aggregation of Crowdsourced Ordinal Assessments and Integration with Learning to Rank: A Latent Trait Model (PM, VP, JAA), pp. 1391–1400.
CIKMCIKM-2015-MishraH #clustering #multi #using
Learning Task Grouping using Supervised Task Space Partitioning in Lifelong Multitask Learning (MM, JH), pp. 1091–1100.
CIKMCIKM-2015-MunozTG #approach #ranking
A Soft Computing Approach for Learning to Aggregate Rankings (JAVM, RdST, MAG), pp. 83–92.
CIKMCIKM-2015-ShuL #adaptation
Transductive Domain Adaptation with Affinity Learning (LS, LJL), pp. 1903–1906.
CIKMCIKM-2015-TranNKGA #adaptation #rank #summary #timeline
Balancing Novelty and Salience: Adaptive Learning to Rank Entities for Timeline Summarization of High-impact Events (TT0, CN, NK, UG, AA), pp. 1201–1210.
CIKMCIKM-2015-WangSL #distance #summary #using
Update Summarization using Semi-Supervised Learning Based on Hellinger Distance (DW0, SS, TL0), pp. 1907–1910.
CIKMCIKM-2015-WanLKYGCH #classification #network
Classification with Active Learning and Meta-Paths in Heterogeneous Information Networks (CW, XL, BK, XY, QG, DWLC, JH0), pp. 443–452.
CIKMCIKM-2015-YeZMJZ #approach #consistency #multi #privacy #rank
Rank Consistency based Multi-View Learning: A Privacy-Preserving Approach (HJY, DCZ, YM, YJ0, ZHZ), pp. 991–1000.
CIKMCIKM-2015-YinWW #clustering #multi
Incomplete Multi-view Clustering via Subspace Learning (QY, SW, LW0), pp. 383–392.
CIKMCIKM-2015-ZenginC #documentation #topic
Learning User Preferences for Topically Similar Documents (MZ, BC), pp. 1795–1798.
CIKMCIKM-2015-ZhangJRXCY #graph #modelling #query
Learning Entity Types from Query Logs via Graph-Based Modeling (JZ, LJ, AR, SX, YC, PSY), pp. 603–612.
ECIRECIR-2015-HuynhHR #analysis #sentiment #strict
Learning Higher-Level Features with Convolutional Restricted Boltzmann Machines for Sentiment Analysis (TH, YH, SMR), pp. 447–452.
ECIRECIR-2015-NicosiaBM #rank
Learning to Rank Aggregated Answers for Crossword Puzzles (MN, GB, AM), pp. 556–561.
ECIRECIR-2015-PasinatoMZ #elicitation #rating
Active Learning Applied to Rating Elicitation for Incentive Purposes (MBP, CEM, GZ), pp. 291–302.
ECIRECIR-2015-PelejaM #retrieval #sentiment
Learning Sentiment Based Ranked-Lexicons for Opinion Retrieval (FP, JM), pp. 435–440.
ICMLICML-2015-AmidU #multi
Multiview Triplet Embedding: Learning Attributes in Multiple Maps (EA, AU), pp. 1472–1480.
ICMLICML-2015-BachHBG #performance
Paired-Dual Learning for Fast Training of Latent Variable Hinge-Loss MRFs (SHB, BH, JLBG, LG), pp. 381–390.
ICMLICML-2015-Bou-AmmarTE #policy #sublinear
Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret (HBA, RT, EE), pp. 2361–2369.
ICMLICML-2015-ChangKADL #education
Learning to Search Better than Your Teacher (KWC, AK, AA, HDI, JL), pp. 2058–2066.
ICMLICML-2015-ChenSYU #modelling
Learning Deep Structured Models (LCC, AGS, ALY, RU), pp. 1785–1794.
ICMLICML-2015-CilibertoMPR #multi
Convex Learning of Multiple Tasks and their Structure (CC, YM,