Travelled to:
1 × Cyprus
1 × Czech Republic
1 × Finland
1 × France
1 × Italy
2 × Japan
2 × Poland
2 × Spain
2 × The Netherlands
4 × USA
Collaborated with:
∅ N.Ghani M.Abbott T.Uustalu Ambrus Kaposi T.Coquand N.Kraus M.Hofmann O.Rypacek P.Morris J.Grattage B.Reus W.Swierstra C.McBride J.Chapman T.Streicher P.Capriotti András Kovács M.H.Escardó N.A.Danielsson A.Löh N.Oury P.Dybjer P.J.Scott P.Hancock L.Malatesta
Talks about:
type (13) induct (7) theori (4) contain (3) normal (3) use (3) polymorph (2) quotient (2) function (2) calculus (2)
Person: Thorsten Altenkirch
DBLP: Altenkirch:Thorsten
Facilitated 1 volumes:
Contributed to:
Wrote 23 papers:
- TLCA-2013-HancockMGMA #induction #recursion
- Small Induction Recursion (PH, CM, NG, LM, TA), pp. 156–172.
- TLCA-2013-KrausECA #theorem
- Generalizations of Hedberg’s Theorem (NK, MHE, TC, TA), pp. 173–188.
- CSL-2012-AltenkirchR #approach
- A Syntactical Approach to Weak ω-Groupoids (TA, OR), pp. 16–30.
- FLOPS-2010-AltenkirchDLO #dependent type #named
- ΠΣ: Dependent Types without the Sugar (TA, NAD, AL, NO), pp. 40–55.
- FoSSaCS-2010-AltenkirchCU #monad
- Monads Need Not Be Endofunctors (TA, JC, TU), pp. 297–311.
- LICS-2009-AltenkirchM
- Indexed Containers (TA, PM), pp. 277–285.
- LICS-2005-AltenkirchG #functional #programming language #quantum
- A Functional Quantum Programming Language (TA, JG), pp. 249–258.
- FLOPS-2004-AltenkirchU #evaluation #normalisation
- Normalization by Evaluation for λ→2 (TA, TU), pp. 260–275.
- ICALP-2004-AbbottAG #induction #representation #using
- Representing Nested Inductive Types Using W-Types (MA, TA, NG), pp. 59–71.
- FoSSaCS-2003-AbbottAG #category theory
- Categories of Containers (MA, TA, NG), pp. 23–38.
- TLCA-2003-AbbottAGM
- Derivatives of Containers (MA, TA, NG, CM), pp. 16–30.
- LICS-2001-AltenkirchDHS #evaluation #normalisation #λ-calculus
- Normalization by Evaluation for Typed λ Calculus with Coproducts (TA, PD, MH, PJS), pp. 303–310.
- TLCA-2001-Altenkirch #algebra #first-order
- Representations of First Order Function Types as Terminal Coalgebras (TA), pp. 8–21.
- TLCA-2001-AltenkirchC #polymorphism #λ-calculus
- A Finitary Subsystem of the Polymorphic λ-Calculus (TA, TC), pp. 22–28.
- CSL-1999-AltenkirchR #induction #monad #using
- Monadic Presentations of λ Terms Using Generalized Inductive Types (TA, BR), pp. 453–468.
- LICS-1999-Altenkirch #similarity #type system
- Extensional Equality in Intensional Type Theory (TA), pp. 412–420.
- CSL-1998-Altenkirch #induction #logic
- Logical Relations and Inductive/Coinductive Types (TA), pp. 343–354.
- LICS-1996-AltenkirchHS #normalisation #polymorphism
- Reduction-Free Normalisation for a Polymorphic System (TA, MH, TS), pp. 98–106.
- TLCA-1993-Altenkirch #formal method #normalisation #proving #system f
- A Formalization of the Strong Normalization Proof for System F in LEGO (TA), pp. 13–28.
- CSL-2016-AltenkirchCK #similarity #strict #type system
- Extending Homotopy Type Theory with Strict Equality (TA, PC, NK), p. 17.
- Haskell-2007-SwierstraA
- Beauty in the beast (WS, TA), pp. 25–36.
- POPL-2016-AltenkirchK #induction #type system #using
- Type theory in type theory using quotient inductive types (TA, AK), pp. 18–29.
- POPL-2019-KaposiKA #induction
- Constructing quotient inductive-inductive types (AK, AK, TA), p. 24.