Travelled to:
1 × Finland
1 × Israel
1 × Slovenia
10 × USA
2 × Canada
2 × United Kingdom
Collaborated with:
U.Brefeld P.Haider S.Wrobel S.Bickel M.Brückner C.Sawade N.Landwehr S.Jaroszewicz K.Grabski ∅ T.Joachims U.Dick L.Dietz A.Zien D.S.Vogel O.Asparouhov R.Greiner C.Darken M.Großhans P.Prasse J.Bogojeska T.Lengauer T.Gärtner
Talks about:
learn (6) bayesian (3) regress (3) problem (3) predict (3) cluster (3) email (3) data (3) discoveri (2) adversari (2)
Person: Tobias Scheffer
DBLP: Scheffer:Tobias
Facilitated 1 volumes:
Contributed to:
Wrote 23 papers:
- ICML-c3-2013-GrosshansSBS #game studies #problem
- Bayesian Games for Adversarial Regression Problems (MG, CS, MB, TS), pp. 55–63.
- ICML-2012-HaiderS #clustering #graph #using
- Finding Botnets Using Minimal Graph Clusterings (PH, TS), p. 37.
- ICML-2012-PrasseSLS #email #identification #learning #regular expression
- Learning to Identify Regular Expressions that Describe Email Campaigns (PP, CS, NL, TS), p. 146.
- KDD-2011-BrucknerS #game studies #predict #problem
- Stackelberg games for adversarial prediction problems (MB, TS), pp. 547–555.
- ICML-2010-SawadeLBS #estimation
- Active Risk Estimation (CS, NL, SB, TS), pp. 951–958.
- ICML-2009-HaiderS #clustering #detection #email
- Bayesian clustering for email campaign detection (PH, TS), pp. 385–392.
- ICML-2008-BickelBLS #learning #multi
- Multi-task learning for HIV therapy screening (SB, JB, TL, TS), pp. 56–63.
- ICML-2008-DickHS #infinity #learning #semistructured data
- Learning from incomplete data with infinite imputations (UD, PH, TS), pp. 232–239.
- ICML-2007-BickelBS #learning
- Discriminative learning for differing training and test distributions (SB, MB, TS), pp. 81–88.
- ICML-2007-DietzBS #predict
- Unsupervised prediction of citation influences (LD, SB, TS), pp. 233–240.
- ICML-2007-HaiderBS #clustering #detection #email #streaming
- Supervised clustering of streaming data for email batch detection (PH, UB, TS), pp. 345–352.
- ICML-2007-ZienBS
- Transductive support vector machines for structured variables (AZ, UB, TS), pp. 1183–1190.
- KDD-2007-VogelAS #linear #scalability
- Scalable look-ahead linear regression trees (DSV, OA, TS), pp. 757–764.
- ICML-2006-BrefeldGSW #performance
- Efficient co-regularised least squares regression (UB, TG, TS, SW), pp. 137–144.
- ICML-2006-BrefeldS #learning
- Semi-supervised learning for structured output variables (UB, TS), pp. 145–152.
- KDD-2005-JaroszewiczS #network #performance
- Fast discovery of unexpected patterns in data, relative to a Bayesian network (SJ, TS), pp. 118–127.
- ICML-2004-BrefeldS #learning
- Co-EM support vector learning (UB, TS).
- SIGIR-2004-GrabskiS
- Sentence completion (KG, TS), pp. 433–439.
- ICML-2001-SchefferW #incremental #information management #problem
- Incremental Maximization of Non-Instance-Averaging Utility Functions with Applications to Knowledge Discovery Problems (TS, SW), pp. 481–488.
- ICML-2000-Scheffer #performance #predict
- Predicting the Generalization Performance of Cross Validatory Model Selection Criteria (TS), pp. 831–838.
- KDD-2000-SchefferW #algorithm
- A sequential sampling algorithm for a general class of utility criteria (TS, SW), pp. 330–334.
- ICML-1999-SchefferJ #analysis #fault
- Expected Error Analysis for Model Selection (TS, TJ), pp. 361–370.
- ICML-1997-SchefferGD #why
- Why Experimentation can be better than “Perfect Guidance” (TS, RG, CD), pp. 331–339.