Travelled to:
1 × China
1 × Japan
1 × Spain
1 × Sweden
1 × Taiwan
1 × Turkey
1 × USA
Collaborated with:
H.Bunke A.Fischer E.Indermühle S.Uchida C.Y.Suen A.Fornés R.Jain C.V.Jawahar R.Manmatha A.Keller Y.Iwakiri R.Ishida K.Fujisaki K.Inai M.Palsson Y.Feng F.Zamora-Martínez S.E.Boquera M.J.C.Bleda
Talks about:
base (5) handwritten (4) recognit (4) document (4) network (4) neural (4) word (4) spot (4) keyword (3) improv (3)
Person: Volkmar Frinken
DBLP: Frinken:Volkmar
Contributed to:
Wrote 11 papers:
- ICPR-2014-FrinkenIIFU #recognition
- Improving Point of View Scene Recognition by Considering Textual Data (VF, YI, RI, KF, SU), pp. 2966–2971.
- ICPR-2014-InaiPFFU #privacy
- Selective Concealment of Characters for Privacy Protection (KI, MP, VF, YF, SU), pp. 333–338.
- ICDAR-2013-FischerFBS #keyword #modelling
- Improving HMM-Based Keyword Spotting with Character Language Models (AF, VF, HB, CYS), pp. 506–510.
- ICPR-2012-FrinkenZBBFB #memory management #modelling #network #recognition
- Long-short term memory neural networks language modeling for handwriting recognition (VF, FZM, SEB, MJCB, AF, HB), pp. 701–704.
- ICDAR-2011-FischerIFB #documentation
- HMM-Based Alignment of Inaccurate Transcriptions for Historical Documents (AF, EI, VF, HB), pp. 53–57.
- ICDAR-2011-FrinkenFBF #recognition #word
- Co-training for Handwritten Word Recognition (VF, AF, HB, AF), pp. 314–318.
- ICDAR-2011-IndermuhleFFB #documentation #keyword #network #online #using
- Keyword Spotting in Online Handwritten Documents Containing Text and Non-text Using BLSTM Neural Networks (EI, VF, AF, HB), pp. 73–77.
- ICDAR-2011-JainFJM #documentation #network #retrieval #word
- BLSTM Neural Network Based Word Retrieval for Hindi Documents (RJ, VF, CVJ, RM), pp. 83–87.
- SAC-2011-FrinkenFB #keyword #self
- Improving handwritten keyword spotting with self-training (VF, AF, HB), pp. 840–845.
- ICPR-2010-FischerKFB #documentation #modelling #using #word
- HMM-based Word Spotting in Handwritten Documents Using Subword Models (AF, AK, VF, HB), pp. 3416–3419.
- ICDAR-2009-FrinkenB #learning #network #recognition #word
- Evaluating Retraining Rules for Semi-Supervised Learning in Neural Network Based Cursive Word Recognition (VF, HB), pp. 31–35.