BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
data (32)
learn (19)
use (12)
text (10)
classif (10)

Stem unlabel$ (all stems)

47 papers:

CASECASE-2015-ZhuCS #energy #linear #process #recognition #using
Using unlabeled acoustic data with locality-constrained linear coding for energy-related activity recognition in buildings (QZ, ZC, YCS), pp. 174–179.
ICMLICML-2015-PlessisNS #learning
Convex Formulation for Learning from Positive and Unlabeled Data (MCdP, GN, MS), pp. 1386–1394.
KDDKDD-2015-LanH #complexity #learning #multi
Reducing the Unlabeled Sample Complexity of Semi-Supervised Multi-View Learning (CL, JH), pp. 627–634.
SIGIRSIGIR-2015-Bravo-MarquezFP #twitter #word
From Unlabelled Tweets to Twitter-specific Opinion Words (FBM, EF, BP), pp. 743–746.
ICMLICML-c3-2013-AlmingolML #behaviour #learning #multi
Learning Multiple Behaviors from Unlabeled Demonstrations in a Latent Controller Space (JA, LM, ML), pp. 136–144.
ICMLICML-c3-2013-BalcanBM #learning #ontology
Exploiting Ontology Structures and Unlabeled Data for Learning (NB, AB, YM), pp. 1112–1120.
KDDKDD-2013-FeiKSNMH #detection #learning
Heat pump detection from coarse grained smart meter data with positive and unlabeled learning (HF, YK, SS, MRN, SKM, JH), pp. 1330–1338.
CIKMCIKM-2012-FukumotoYMS #classification #documentation
Text classification with relatively small positive documents and unlabeled data (FF, TY, SM, YS), pp. 2315–2318.
ICMLICML-2012-ChambersJ #learning
Learning the Central Events and Participants in Unlabeled Text (NC, DJ), p. 3.
ICPRICPR-2012-KongW12a #clustering
Transfer heterogeneous unlabeled data for unsupervised clustering (SK, DW), pp. 1193–1196.
ICPRICPR-2012-KunchevaF #detection #feature model #multi #streaming
PCA feature extraction for change detection in multidimensional unlabelled streaming data (LIK, WJF), pp. 1140–1143.
ICPRICPR-2012-TakedaTRKKYTOMT #image #recognition #self
Self-training with unlabeled regions for NBI image recognition (TT, TT, BR, KK, TK, SY, YT, KO, RM, ST), pp. 25–28.
ICPRICPR-2012-XueCH #classification #constraints #kernel
Discriminative indefinite kernel classifier from pairwise constraints and unlabeled data (HX, SC, JH), pp. 497–500.
CIKMCIKM-2011-SellamanickamGS #approach #learning #ranking
A pairwise ranking based approach to learning with positive and unlabeled examples (SS, PG, SKS), pp. 663–672.
ICMLICML-2011-LiZ #towards
Towards Making Unlabeled Data Never Hurt (YFL, ZHZ), pp. 1081–1088.
ICMLICML-2011-UrnerSB #predict
Access to Unlabeled Data can Speed up Prediction Time (RU, SSS, SBD), pp. 641–648.
RTARTA-2011-SternagelT #composition #semantics
Modular and Certified Semantic Labeling and Unlabeling (CS, RT), pp. 329–344.
CIKMCIKM-2010-ChaturvediFSM #classification #scalability
Estimating accuracy for text classification tasks on large unlabeled data (SC, TAF, LVS, MKM), pp. 889–898.
CIKMCIKM-2010-QianCXQ #how
How about utilizing ordinal information from the distribution of unlabeled data (MQ, BC, HX, HQ), pp. 289–298.
ICPRICPR-2010-BaghshahS #constraints #kernel #learning #performance
Efficient Kernel Learning from Constraints and Unlabeled Data (MSB, SBS), pp. 3364–3367.
SIGIRSIGIR-2010-ArguelloDP
Vertical selection in the presence of unlabeled verticals (JA, FD, JFP), pp. 691–698.
CIKMCIKM-2009-QianNZ #multi #performance
Efficient multi-class unlabeled constrained semi-supervised SVM (MQ, FN, CZ), pp. 1665–1668.
CIKMCIKM-2009-QiCKKW #learning
Combining labeled and unlabeled data with word-class distribution learning (YQ, RC, PPK, KK, JW), pp. 1737–1740.
ICPRICPR-2008-KarlssonA #image
MDL patch correspondences on unlabeled images (JK, ), pp. 1–5.
KDDKDD-2008-BifetG #adaptation #data type #mining
Mining adaptively frequent closed unlabeled rooted trees in data streams (AB, RG), pp. 34–42.
KDDKDD-2008-ElkanN #classification #learning
Learning classifiers from only positive and unlabeled data (CE, KN), pp. 213–220.
SACSAC-2008-TanWWC #detection #problem #semantics #using
Using unlabeled data to handle domain-transfer problem of semantic detection (ST, YW, GW, XC), pp. 896–903.
ICMLICML-2007-RainaBLPN #learning #self
Self-taught learning: transfer learning from unlabeled data (RR, AB, HL, BP, AYN), pp. 759–766.
ICMLICML-2005-ZhouHS #graph #learning
Learning from labeled and unlabeled data on a directed graph (DZ, JH, BS), pp. 1036–1043.
SIGIRSIGIR-2005-BeitzelJFGLCK #automation #classification #query #using #web
Automatic web query classification using labeled and unlabeled training data (SMB, ECJ, OF, DAG, DDL, AC, AK), pp. 581–582.
ICPRICPR-v3-2004-WuZZ #feature model #linear #using
Relevant Linear Feature Extraction Using Side-information and Unlabeled Data (FW, YZ, CZ), pp. 582–585.
SIGIRSIGIR-2004-FanL #classification #semantics #video
Semantic video classification by integrating unlabeled samples for classifier training (JF, HL), pp. 592–593.
CIKMCIKM-2003-YuZH #classification #documentation
Text classification from positive and unlabeled documents (HY, CZ, JH), pp. 232–239.
ICMLICML-2003-LeeL #learning #using
Learning with Positive and Unlabeled Examples Using Weighted Logistic Regression (WSL, BL), pp. 448–455.
ICMLICML-2002-Ghani #categorisation #multi
Combining Labeled and Unlabeled Data for MultiClass Text Categorization (RG), pp. 187–194.
ICMLICML-2002-Mladenic #learning #normalisation #using #word
Learning word normalization using word suffix and context from unlabeled data (DM), pp. 427–434.
ICMLICML-2002-RaskuttiFK #classification #clustering #parametricity #using
Using Unlabelled Data for Text Classification through Addition of Cluster Parameters (BR, HLF, AK), pp. 514–521.
KDDKDD-2002-BennettDM
Exploiting unlabeled data in ensemble methods (KPB, AD, RM), pp. 289–296.
KDDKDD-2002-RaskuttiFK #classification #clustering #using
Combining clustering and co-training to enhance text classification using unlabelled data (BR, HLF, AK), pp. 620–625.
SIGIRSIGIR-2002-AminiG #learning #summary
The use of unlabeled data to improve supervised learning for text summarization (MRA, PG), pp. 105–112.
SIGIRSIGIR-2002-Boyapati #classification #using
Improving hierarchical text classification using unlabeled data (VB), pp. 363–364.
ICMLICML-2001-BlumC #graph #learning #using
Learning from Labeled and Unlabeled Data using Graph Mincuts (AB, SC), pp. 19–26.
KDDKDD-2001-YamanishiT
Discovering outlier filtering rules from unlabeled data: combining a supervised learner with an unsupervised learner (KY, JiT), pp. 389–394.
ICMLICML-2000-GoldmanZ #learning
Enhancing Supervised Learning with Unlabeled Data (SAG, YZ), pp. 327–334.
ICMLICML-2000-ZelikovitzH #classification #problem #using
Improving Short-Text Classification using Unlabeled Data for Classification Problems (SZ, HH), pp. 1191–1198.
ICPRICPR-v1-2000-NelsonS #3d #empirical #learning #modelling #recognition
Learning 3D Recognition Models for General Objects from Unlabeled Imagery: An Experiment in Intelligent Brute Force (RCN, AS), pp. 1001–1008.
ICPRICPR-v1-2000-WuTH #feedback #image #retrieval
Integrating Unlabeled Images for Image Retrieval Based on Relevance Feedback (YW, QT, TSH), pp. 1021–1024.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.