Travelled to:
1 × Australia
1 × Austria
1 × China
1 × Japan
1 × Korea
2 × Spain
2 × USA
3 × Germany
Collaborated with:
C.Y.Suen J.Dong B.Kégl H.Niemann D.Ponson ∅ T.Linder E.Skubalska-Rafajlowicz W.Ding G.Chen T.D.Bui N.W.Strathy S.Li T.Fevens S.Li
Talks about:
function (7) classif (5) learn (5) use (5) recognit (4) network (4) radial (4) basi (4) nonparametr (2) handwritten (2)
Person: Adam Krzyzak
DBLP: Krzyzak:Adam
Contributed to:
Wrote 15 papers:
- ICPR-2008-DingSK #recognition
- A new courtesy amount recognition module of a Check Reading System (WD, CYS, AK), pp. 1–4.
- ICPR-v2-2006-ChenBK #invariant #pattern matching #pattern recognition #recognition
- Invariant Ridgelet-Fourier Descriptor for Pattern Recognition (GC, TDB, AK), pp. 768–771.
- ICDAR-2005-DongPKS #word
- Cursive word skew/slant corrections based on Radon transform (JxD, DP, AK, CYS), pp. 478–483.
- MLDM-2005-DongKSP #composition #geometry #low level #representation #word
- Low-Level Cursive Word Representation Based on Geometric Decomposition (JxD, AK, CYS, DP), pp. 590–599.
- MLDM-2005-LiFKL #automation #image #modelling #segmentation #using
- Automatic Clinical Image Segmentation Using Pathological Modelling, PCA and SVM (SL, TF, AK, SL), pp. 314–324.
- MLDM-2003-DongKS #optimisation #parallel #performance
- A Fast Parallel Optimization for Training Support Vector Machine (JxD, AK, CYS), pp. 96–105.
- ICDAR-2001-DongKS #framework #learning #multi #pattern matching #pattern recognition #recognition
- A Multi-Net Local Learning Framework for Pattern Recognition (JxD, AK, CYS), pp. 328–332.
- MLDM-2001-DongKS #framework #learning #recognition
- Local Learning Framework for Recognition of Lowercase Handwritten Characters (JxD, AK, CYS), pp. 226–238.
- MLDM-2001-Krzyzak #classification #learning #network #using
- Nonlinear Function Learning and Classification Using Optimal Radial Basis Function Networks (AK), pp. 217–225.
- ICPR-v2-2000-KeglKN #classification #complexity #learning #network
- Radial Basis Function Networks and Complexity Regularization in Function Learning and Classification (BK, AK, HN), pp. 2081–2086.
- ICPR-v3-2000-KeglK #linear #using
- Piecewise Linear Skeletonization Using Principal Curves (BK, AK), pp. 3135–3138.
- ICPR-1998-KeglKN #classification #learning #network #parametricity
- Radial basis function networks in nonparametric classification and function learning (BK, AK, HN), pp. 565–570.
- ICPR-1996-KrzyzakL #classification #complexity #convergence #network #parametricity
- Radial basis function networks and nonparametric classification: complexity regularization and rates of convergence (AK, TL), pp. 650–653.
- ICPR-1996-Skubalska-RafajlowiczK #classification #metric #performance #using
- Fast k-NN classification rule using metric on space-filling curves (ESR, AK), pp. 121–125.
- ICDAR-1993-StrathySK #segmentation #using
- Segmentation of handwritten digits using contour features (NWS, CYS, AK), pp. 577–580.