Travelled to:
1 × Australia
1 × Israel
2 × Canada
2 × Spain
2 × USA
2 × United Kingdom
Collaborated with:
R.Busa-Fekete A.Krzyzak R.Bardenet H.Niemann S.Bouktif H.A.Sahraoui D.Benbouzid M.Brendel M.Sebag D.Azar D.Precup B.Szörényi I.Hegedüs R.Ormándi M.Jelasity
Talks about:
function (4) algorithm (3) classif (3) base (3) use (3) softwar (2) qualiti (2) predict (2) network (2) surrog (2)
Person: Balázs Kégl
DBLP: K=eacute=gl:Bal=aacute=zs
Contributed to:
Wrote 11 papers:
- ICML-c2-2013-BardenetBKS #collaboration
- Collaborative hyperparameter tuning (RB, MB, BK, MS), pp. 199–207.
- ICML-c3-2013-SzorenyiBHOJK #algorithm #distributed #probability
- Gossip-based distributed stochastic bandit algorithms (BS, RBF, IH, RO, MJ, BK), pp. 19–27.
- ICML-2012-Busa-FeketeBK #classification #graph #performance #using
- Fast classification using sparse decision DAGs (RBF, DB, BK), p. 99.
- ICML-2010-BardenetK #algorithm #optimisation
- Surrogating the surrogate: accelerating Gaussian-process-based global optimization with a mixture cross-entropy algorithm (RB, BK), pp. 55–62.
- ICML-2010-Busa-FeketeK #performance #using
- Fast boosting using adversarial bandits (RBF, BK), pp. 143–150.
- ICML-2009-KeglB #classification
- Boosting products of base classifiers (BK, RBF), pp. 497–504.
- ASE-2002-AzarPBKS #adaptation #algorithm #modelling #predict #quality #search-based
- Combining and Adapting Software Quality Predictive Models by Genetic Algorithms (DA, DP, SB, BK, HAS), pp. 285–288.
- ICSM-2002-BouktifSK #approach #modelling #predict #quality
- Combining Software Quality Predictive Models: An Evolutionary Approach (SB, HAS, BK), pp. 385–392.
- ICPR-v2-2000-KeglKN #classification #complexity #learning #network
- Radial Basis Function Networks and Complexity Regularization in Function Learning and Classification (BK, AK, HN), pp. 2081–2086.
- ICPR-v3-2000-KeglK #linear #using
- Piecewise Linear Skeletonization Using Principal Curves (BK, AK), pp. 3135–3138.
- ICPR-1998-KeglKN #classification #learning #network #parametricity
- Radial basis function networks in nonparametric classification and function learning (BK, AK, HN), pp. 565–570.