Travelled to:
1 × Brazil
1 × China
1 × Portugal
1 × Taiwan
1 × Turkey
1 × United Kingdom
2 × Canada
2 × USA
Collaborated with:
P.Zhang J.Tan T.Liu Y.Sun B.Fang Y.Li J.Guo P.Liu X.Zhu J.Li Y.Wang Z.Zhang S.Boukir N.Chehata Y.Liu J.Liang X.Zhou Y.Hu S.Bai C.Zhou Y.Cao P.Wang B.J.Gao
Talks about:
data (5) stream (4) network (3) traffic (2) regular (2) express (2) ensembl (2) match (2) use (2) dfa (2)
Person: Li Guo
DBLP: Guo:Li
Contributed to:
Wrote 12 papers:
- CIKM-2014-LiangZHGB #identification #named #novel #sentiment #word
- CONR: A Novel Method for Sentiment Word Identification (JL, XZ, YH, LG, SB), pp. 1943–1946.
- CIKM-2013-GuoZZCG #network #personalisation #social
- Personalized influence maximization on social networks (JG, PZ, CZ, YC, LG), pp. 199–208.
- CIAA-2012-LiuSGF #automaton #named #regular expression
- SDFA: Series DFA for Memory-Efficient Regular Expression Matching (TL, YS, LG, BF), pp. 337–344.
- CIKM-2011-GuoZTG #data type #mining #multi
- Mining frequent patterns across multiple data streams (JG, PZ, JT, LG), pp. 2325–2328.
- CIKM-2011-LiZTLG #data type #in the cloud #query
- Continuous data stream query in the cloud (JL, PZ, JT, PL, LG), pp. 2389–2392.
- KDD-2011-ZhangLWGZG #data type #modelling #performance #predict
- Enabling fast prediction for ensemble models on data streams (PZ, JL, PW, BJG, XZ, LG), pp. 177–185.
- SAC-2011-LiuSGF #classification #performance
- Improving matching performance of DPI traffic classifier (TL, YS, LG, BF), pp. 514–519.
- SAC-2011-WangZG #classification #identification #network
- Traffic classification beyond application level: identifying content types from network traces (YW, ZZ, LG), pp. 540–541.
- CIAA-2010-LiuGLT #automaton #composition #matrix #regular expression
- Compressing Regular Expressions’ DFA Table by Matrix Decomposition (YL, LG, PL, JT), pp. 282–289.
- CIKM-2010-ZhangZTG #concept #data type #framework #named
- SKIF: a data imputation framework for concept drifting data streams (PZ, XZ, JT, LG), pp. 1869–1872.
- ICPR-2010-GuoBC #approach #learning #using
- Support Vectors Selection for Supervised Learning Using an Ensemble Approach (LG, SB, NC), pp. 37–40.
- SAC-2008-LiG #detection #network #optimisation #using
- TCM-KNN scheme for network anomaly detection using feature-based optimizations (YL, LG), pp. 2103–2109.