Travelled to:
1 × Czech Republic
1 × Denmark
1 × Finland
1 × Germany
1 × Italy
1 × United Kingdom
2 × Estonia
2 × France
2 × Japan
2 × Poland
2 × Spain
3 × The Netherlands
4 × USA
Collaborated with:
P.Johann ∅ M.Abbott R.Atkey T.Altenkirch C.Lüth C.McBride V.d.Paiva E.Ritter A.Heyworth R.D.Cosmo F.N.Forsberg L.Malatesta C.Fumex R.Prince A.Setzer B.Jacobs T.Uustalu V.Vene T.Revell S.Staton P.Hancock
Talks about:
type (7) induct (5) contain (3) model (3) use (3) substitut (2) coproduct (2) construct (2) properti (2) explicit (2)
Person: Neil Ghani
DBLP: Ghani:Neil
Contributed to:
Wrote 23 papers:
- TLCA-2015-AtkeyGFRS #modelling #morphism #physics #polymorphism
- Models for Polymorphism over Physical Dimension (RA, NG, FNF, TR, SS), pp. 45–59.
- POPL-2014-AtkeyGJ #dependent type #parametricity #type system
- A relationally parametric model of dependent type theory (RA, NG, PJ), pp. 503–516.
- LICS-2013-GhaniMFS #data type
- Fibred Data Types (NG, LM, FNF, AS), pp. 243–252.
- TLCA-2013-HancockMGMA #induction #recursion
- Small Induction Recursion (PH, CM, NG, LM, TA), pp. 156–172.
- FoSSaCS-2012-AtkeyGJJ #induction
- Fibrational Induction Meets Effects (RA, NG, BJ, PJ), pp. 42–57.
- FoSSaCS-2011-AtkeyJG #induction #question #refinement
- When Is a Type Refinement an Inductive Type? (RA, PJ, NG), pp. 72–87.
- CSL-2010-GhaniJF #algebra #induction
- Fibrational Induction Rules for Initial Algebras (NG, PJ, CF), pp. 336–350.
- FLOPS-2008-PrinceGM #proving #using
- Proving Properties about Lists Using Containers (RP, NG, CM), pp. 97–112.
- POPL-2008-JohannG #data type #programming
- Foundations for structured programming with GADTs (PJ, NG), pp. 297–308.
- TLCA-2007-JohannG #algebra #exclamation #semantics
- Initial Algebra Semantics Is Enough! (PJ, NG), pp. 207–222.
- ICFP-2005-GhaniJUV #monad
- Monadic augment and generalised short cut fusion (NG, PJ, TU, VV), pp. 294–305.
- RTA-2005-AbbottGL #composition
- Abstract Modularity (MA, NG, CL), pp. 46–60.
- ICALP-2004-AbbottAG #induction #representation #using
- Representing Nested Inductive Types Using W-Types (MA, TA, NG), pp. 59–71.
- FoSSaCS-2003-AbbottAG #category theory
- Categories of Containers (MA, TA, NG), pp. 23–38.
- RTA-2003-GhaniH
- A Rewriting Alternative to Reidemeister-Schreier (NG, AH), pp. 452–466.
- TLCA-2003-AbbottAGM
- Derivatives of Containers (MA, TA, NG, CM), pp. 16–30.
- ICFP-2002-LuthG #monad #using
- Composing monads using coproducts (CL, NG), pp. 133–144.
- FoSSaCS-1999-GhaniPR #category theory #modelling
- Categorical Models of Explicit Substitutions (NG, VdP, ER), pp. 197–211.
- ICALP-1998-GhaniPR
- Explicit Substitutions for Constructive Necessity (NG, VdP, ER), pp. 743–754.
- ICALP-1997-CosmoG #composition #higher-order #on the #λ-calculus
- On Modular Properties of Higher Order Extensional λ Calculi (RDC, NG), pp. 237–247.
- TLCA-1997-Ghani #calculus #dependent type #type system
- Eta-Expansions in Dependent Type Theory — The Calculus of Constructions (NG), pp. 164–180.
- CSL-1996-Ghani
- η-Expansions in Fω (NG), pp. 182–197.
- TLCA-1995-Ghani
- ßn-Equality for Coproducts (NG), pp. 171–185.