Travelled to:
1 × France
1 × Germany
1 × Hungary
1 × Russia
1 × Spain
1 × Taiwan
Collaborated with:
F.Blanchet-Sadri F.Manea J.Dassow M.Müller A.Saarela S.Simmons S.Z.Fazekas K.Shikishima-Tsuji G.Scott T.Ehlers D.Nowotka E.Weissenstein E.Allen C.Byrum A.Rashin E.Willett J.I.Kim W.Severa
Talks about:
partial (5) word (5) abelian (3) palindrom (2) pattern (2) closur (2) binari (2) squar (2) inner (2) avoid (2)
Person: Robert Mercas
DBLP: Mercas:Robert
Contributed to:
Wrote 10 papers:
- DLT-2014-EhlersMMN #pattern matching
- k-Abelian Pattern Matching (TE, FM, RM, DN), pp. 178–190.
- DLT-2013-DassowMMM
- Inner Palindromic Closure (JD, FM, RM, MM), pp. 155–166.
- DLT-2013-MercasS
- 3-Abelian Cubes Are Avoidable on Binary Alphabets (RM, AS), pp. 374–383.
- DLT-J-2013-DassowMMM14
- Inner Palindromic Closure (JD, FM, RM, MM), pp. 1049–1064.
- DLT-2012-FazekasMS #bound
- Hairpin Completion with Bounded Stem-Loop (SZF, RM, KST), pp. 428–439.
- LATA-2010-Blanchet-SadriKMSS #word
- Abelian Square-Free Partial Words (FBS, JIK, RM, WS, SS), pp. 94–105.
- LATA-2010-Blanchet-SadriMSW #word
- Avoidable Binary Patterns in Partial Words (FBS, RM, SS, EW), pp. 106–117.
- LATA-2009-Blanchet-SadriABM #how #question #word
- How Many Holes Can an Unbordered Partial Word Contain? (FBS, EA, CB, RM), pp. 176–187.
- LATA-2009-Blanchet-SadriMRW #algorithm #using #word
- An Answer to a Conjecture on Overlaps in Partial Words Using Periodicity Algorithms (FBS, RM, AR, EW), pp. 188–199.
- AFL-2008-Blanchet-SadriMS #word
- Counting Distinct Squares in Partial Words (FBS, RM, GS), pp. 122–133.