Travelled to:
1 × Canada
1 × Estonia
1 × USA
Collaborated with:
F.Pfenning ∅ J.Harrison J.Backes S.Bayless B.Cook C.Dodge A.Gacek A.J.Hu T.Kahsai B.Kocik E.Kotelnikov J.Kukovec J.R.0004 N.Rungta J.Sizemore M.A.Stalzer P.Srinivasan P.Subotic C.Varming B.Whaley
Talks about:
hol (2) intuitionist (1) interpret (1) reachabl (1) procedur (1) arithmet (1) theorem (1) network (1) isabell (1) analysi (1)
Person: Sean McLaughlin
DBLP: McLaughlin:Sean
Contributed to:
Wrote 4 papers:
- CADE-2009-McLaughlinP #performance #proving #theorem proving
- Efficient Intuitionistic Theorem Proving with the Polarized Inverse Method (SM, FP), pp. 230–244.
- IJCAR-2006-McLaughlin #higher-order
- An Interpretation of Isabelle/HOL in HOL Light (SM), pp. 192–204.
- CADE-2005-McLaughlinH
- A Proof-Producing Decision Procedure for Real Arithmetic (SM, JH), pp. 295–314.
- CAV-2019-BackesBCDGHKKKK #analysis #network #reachability
- Reachability Analysis for AWS-Based Networks (JB, SB, BC, CD, AG, AJH, TK, BK, EK, JK, SM, JR0, NR, JS, MAS, PS, PS, CV, BW), pp. 231–241.