BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Denmark
1 × Estonia
1 × France
1 × Ireland
1 × Italy
2 × Canada
2 × USA
Collaborated with:
R.A.Schmidt B.Konev C.Dixon M.Ludwig L.Zhang B.Motik U.Sattler L.Georgieva C.Nalon A.Ozaki A.Riazanov A.Voronkov
Talks about:
tempor (6) resolut (5) logic (4) prover (3) monod (3) procedur (2) decis (2) decid (2) class (2) hyperresolut (1)

Person: Ullrich Hustadt

DBLP DBLP: Hustadt:Ullrich

Contributed to:

CADE 20092009
CADE 20052005
IJCAR 20042004
KR 20042004
CADE 20032003
CADE 20022002
KR 20022002
CADE 20002000
CADE 19991999
IJCAR 20162016
CADE 20172017

Wrote 13 papers:

CADE-2009-LudwigH #reasoning
Fair Derivations in Monodic Temporal Reasoning (ML, UH), pp. 261–276.
CADE-2009-ZhangHD #calculus
A Refined Resolution Calculus for CTL (LZ, UH, CD), pp. 245–260.
Deciding Monodic Fragments by Temporal Resolution (UH, BK, RAS), pp. 204–218.
IJCAR-2004-HustadtKRV #named #proving
TeMP: A Temporal Monodic Prover (UH, BK, AR, AV), pp. 326–330.
KR-2004-HustadtMS #datalog #logic #source code
Reducing SHIQ-Description Logic to Disjunctive Datalog Programs (UH, BM, US), pp. 152–162.
CADE-2003-HustadtK #proving
TRP++2.0: A Temporal Resolution Prover (UH, BK), pp. 274–278.
CADE-2003-SchmidtH #axiom #first-order
A Principle for Incorporating Axioms into the First-Order Translation of Modal Formulae (RAS, UH), pp. 412–426.
CADE-2002-GeorgievaHS #decidability
A New Clausal Class Decidable by Hyperresolution (LG, UH, RAS), pp. 260–274.
KR-2002-HustadtS #benchmark #logic #metric
Scientific Benchmarking with Temporal Logic Decision Procedures (UH, RAS), pp. 533–546.
CADE-2000-SchmidtH #logic
A Resolution Decision Procedure for Fluted Logic (RAS, UH), pp. 433–448.
CADE-1999-HustadtS #revisited
Maslov’s Class K Revisited (UH, RAS), pp. 172–186.
IJCAR-2016-NalonHD #multimodal #proving
: A Resolution-Based Prover for Multimodal K (CN, UH, CD), pp. 406–415.
CADE-2017-HustadtOD #logic #metric #proving #theorem proving
Theorem Proving for Metric Temporal Logic over the Naturals (UH, AO, CD), pp. 326–343.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.