Stem hyperparamet$ (all stems)
9 papers:
ICML-2015-MaclaurinDA #learning #optimisation- Gradient-based Hyperparameter Optimization through Reversible Learning (DM, DKD, RPA), pp. 2113–2122.
ICML-c1-2014-HutterHL #approach #performance- An Efficient Approach for Assessing Hyperparameter Importance (FH, HH, KLB), pp. 754–762.
ICML-c2-2014-GiesenLW #kernel #performance #robust- Robust and Efficient Kernel Hyperparameter Paths with Guarantees (JG, SL, PW), pp. 1296–1304.
ICML-c1-2013-BergstraYC #architecture #optimisation- Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures (JB, DY, DDC), pp. 115–123.
ICML-c2-2013-BardenetBKS #collaboration- Collaborative hyperparameter tuning (RB, MB, BK, MS), pp. 199–207.
KDD-2013-ThorntonHHL #algorithm #classification #named #optimisation- Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms (CT, FH, HHH, KLB), pp. 847–855.
CIKM-2009-MasadaFTHSO #analysis #optimisation #topic- Dynamic hyperparameter optimization for bayesian topical trend analysis (TM, DF, AT, TH, YS, KO), pp. 1831–1834.
ICML-2009-FooDN #algorithm #learning #multi- A majorization-minimization algorithm for (multiple) hyperparameter learning (CSF, CBD, AYN), pp. 321–328.
ICPR-2008-LevadaMT #image #markov #modelling #on the #probability #random- On the asymptotic variances of Gaussian Markov Random Field model hyperparameters in stochastic image modeling (ALML, NDAM, AT), pp. 1–4.