BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Cyprus
1 × Germany
1 × Serbia
1 × Switzerland
1 × USA
1 × United Kingdom
2 × Italy
2 × Japan
Collaborated with:
A.Doumane D.Baelde Z.M.Ariola H.Herbelin D.Miller P.Pédrot M.Bagnol R.Nollet C.Tasson P.Downen K.Nakata
Talks about:
proof (6) classic (3) logic (3) need (3) call (3) calculus (2) calculi (2) theori (2) linear (2) point (2)

Person: Alexis Saurin

DBLP DBLP: Saurin:Alexis

Contributed to:

CSL 20152015
FoSSaCS 20152015
FLOPS 20122012
TLCA 20112011
FLOPS 20102010
FOSSACS 20102010
CSL 20082008
ICLP 20082008
CSL 20072007
LICS 20052005
ESOP 20162016
CSL 20162016
CSL 20182018

Wrote 13 papers:

CSL-2015-BaeldeDS #fixpoint
Least and Greatest Fixed Points in Ludics (DB, AD, AS), pp. 549–566.
FoSSaCS-2015-BagnolDS #dependence #logic #on the
On the Dependencies of Logical Rules (MB, AD, AS), pp. 436–450.
FLOPS-2012-AriolaDHNS #calculus #call-by #semantics
Classical Call-by-Need Sequent Calculi: The Unity of Semantic Artifacts (ZMA, PD, HH, KN, AS), pp. 32–46.
TLCA-2011-AriolaHS #call-by
Classical Call-by-Need and Duality (ZMA, HH, AS), pp. 27–44.
FLOPS-2010-Saurin #standard #λ-calculus #μ-calculus
Standardization and Böhm Trees for λμ-Calculus (AS), pp. 134–149.
FoSSaCS-2010-Saurin #call-by #continuation
A Hierarchy for Delimited Continuations in Call-by-Name (AS), pp. 374–388.
CSL-2008-Saurin #on the #λ-calculus #μ-calculus
On the Relations between the Syntactic Theories of λμ-Calculi (AS), pp. 154–168.
ICLP-2008-Saurin #interactive #programming #proving #towards
Towards Ludics Programming: Interactive Proof Search (AS), pp. 253–268.
CSL-2007-MillerS #composition #linear #logic #proving
From Proofs to Focused Proofs: A Modular Proof of Focalization in Linear Logic (DM, AS), pp. 405–419.
LICS-2005-Saurin #λ-calculus #μ-calculus
Separation with Streams in the λμ-calculus (AS), pp. 356–365.
Classical By-Need (PMP, AS), pp. 616–643.
CSL-2016-BaeldeDS #multi #proving
Infinitary Proof Theory: the Multiplicative Additive Case (DB, AD, AS), p. 17.
CSL-2018-NolletST #fixpoint #linear #logic #proving
Local Validity for Circular Proofs in Linear Logic with Fixed Points (RN, AS, CT), p. 23.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.