Travelled to:
1 × Australia
1 × Canada
1 × China
1 × Germany
1 × United Kingdom
5 × USA
Collaborated with:
Ö.Simsek G.Konidaris T.J.Perkins B.C.d.Silva P.S.Thomas A.Jonsson B.Ravindran M.Pickett A.McGovern A.P.Wolfe R.Moll J.Randløv M.T.Rosenstein
Talks about:
learn (10) reinforc (7) use (5) parameter (2) algorithm (2) identifi (2) subgoal (2) action (2) skill (2) local (2)
Person: Andrew G. Barto
DBLP: Barto:Andrew_G=
Contributed to:
Wrote 14 papers:
- ICML-c2-2014-SilvaKB #learning
- Active Learning of Parameterized Skills (BCdS, GK, AGB), pp. 1737–1745.
- ICML-2012-SilvaKB #learning
- Learning Parameterized Skills (BCdS, GK, AGB), p. 187.
- ICML-2011-ThomasB #markov #process
- Conjugate Markov Decision Processes (PST, AGB), pp. 137–144.
- ICML-2006-KonidarisB #information management #learning
- Autonomous shaping: knowledge transfer in reinforcement learning (GK, AGB), pp. 489–496.
- ICML-2006-SimsekB #performance
- An intrinsic reward mechanism for efficient exploration (ÖS, AGB), pp. 833–840.
- ICML-2005-JonssonB #approach #composition
- A causal approach to hierarchical decomposition of factored MDPs (AJ, AGB), pp. 401–408.
- ICML-2005-SimsekWB #clustering #graph #identification #learning
- Identifying useful subgoals in reinforcement learning by local graph partitioning (ÖS, APW, AGB), pp. 816–823.
- ICML-2004-SimsekB #abstraction #identification #learning #using
- Using relative novelty to identify useful temporal abstractions in reinforcement learning (ÖS, AGB).
- ICML-2003-RavindranB
- Relativized Options: Choosing the Right Transformation (BR, AGB), pp. 608–615.
- ICML-2002-PickettB #algorithm #learning #named
- PolicyBlocks: An Algorithm for Creating Useful Macro-Actions in Reinforcement Learning (MP, AGB), pp. 506–513.
- ICML-2001-McGovernB #automation #learning #using
- Automatic Discovery of Subgoals in Reinforcement Learning using Diverse Density (AM, AGB), pp. 361–368.
- ICML-2001-PerkinsB #learning #set
- Lyapunov-Constrained Action Sets for Reinforcement Learning (TJP, AGB), pp. 409–416.
- ICML-2000-MollPB #machine learning #problem
- Machine Learning for Subproblem Selection (RM, TJP, AGB), pp. 615–622.
- ICML-2000-RandlovBR #algorithm #learning
- Combining Reinforcement Learning with a Local Control Algorithm (JR, AGB, MTR), pp. 775–782.