Travelled to:
1 × China
1 × Israel
1 × Spain
1 × USA
1 × United Kingdom
2 × France
Collaborated with:
∅ M.Ghavamzadeh I.Chades F.Charpillet B.Lesner M.Tagorti M.Geist A.Lazaric V.Gabillon C.Thiery J.Perolat B.Piot O.Pietquin
Talks about:
polici (5) iter (5) approxim (4) approach (2) problem (2) tempor (2) modifi (2) markov (2) differ (2) stationari (1)
Person: Bruno Scherrer
DBLP: Scherrer:Bruno
Contributed to:
Wrote 11 papers:
- ICML-2015-LesnerS #approximate #policy
- Non-Stationary Approximate Modified Policy Iteration (BL, BS), pp. 1567–1575.
- ICML-2015-PerolatSPP #approximate #game studies #markov #programming
- Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games (JP, BS, BP, OP), pp. 1321–1329.
- ICML-2015-TagortiS #bound #convergence #fault #on the
- On the Rate of Convergence and Error Bounds for LSTD(λ) (MT, BS), pp. 1521–1529.
- ICML-c2-2014-Scherrer #approximate #comparison #policy
- Approximate Policy Iteration Schemes: A Comparison (BS), pp. 1314–1322.
- ICML-2012-GeistSLG #approach #difference #learning
- A Dantzig Selector Approach to Temporal Difference Learning (MG, BS, AL, MG), p. 49.
- ICML-2012-ScherrerGGG #approximate #policy
- Approximate Modified Policy Iteration (BS, VG, MG, MG), p. 245.
- ICML-2011-GabillonLGS #classification #policy
- Classification-based Policy Iteration with a Critic (VG, AL, MG, BS), pp. 1049–1056.
- ICML-2010-Scherrer #difference #fixpoint #perspective
- Should one compute the Temporal Difference fix point or minimize the Bellman Residual? The unified oblique projection view (BS), pp. 959–966.
- ICML-2010-ThieryS #policy #problem #trade-off
- Least-Squares Policy Iteration: Bias-Variance Trade-off in Control Problems (CT, BS), pp. 1071–1078.
- ICEIS-v2-2003-ChadesSC #markov #multi #process #using
- Planning Cooperative Homogeneous Multiagent Systems Using Markov Decision Processes (IC, BS, FC), pp. 426–429.
- SAC-2002-ChadesSC #approach #assessment #heuristic #problem
- A heuristic approach for solving decentralized-POMDP: assessment on the pursuit problem (IC, BS, FC), pp. 57–62.