Travelled to:
1 × China
1 × Finland
1 × Germany
1 × Israel
1 × United Kingdom
2 × Canada
4 × USA
Collaborated with:
∅ J.Vert M.I.Jordan A.Joulin G.Obozinski K.S.S.Kumar T.Hocking J.Mairal R.Lajugie S.Arlot E.Richard S.Lacoste-Julien A.d'Aspremont L.E.Ghaoui G.R.G.Lanckriet G.Rigaill R.Jenatton J.Ponce G.Sapiro A.Rakotomamonjy S.Canu Y.Grandvalet
Talks about:
learn (7) kernel (4) spars (4) algorithm (3) convex (3) dictionari (2) penalti (2) multipl (2) between (2) method (2)
Person: Francis R. Bach
DBLP: Bach:Francis_R=
Facilitated 1 volumes:
Contributed to:
Wrote 15 papers:
- ICML-c1-2014-LajugieBA #clustering #learning #metric #problem
- Large-Margin Metric Learning for Constrained Partitioning Problems (RL, FRB, SA), pp. 297–305.
- ICML-c1-2013-KumarB #bound #graph #learning
- Convex Relaxations for Learning Bounded-Treewidth Decomposable Graphs (KSSK, FRB), pp. 525–533.
- ICML-c3-2013-HockingRVB #detection #learning #using
- Learning Sparse Penalties for Change-point Detection using Max Margin Interval Regression (TH, GR, JPV, FRB), pp. 172–180.
- ICML-c3-2013-RichardBV #estimation #multi
- Intersecting singularities for multi-structured estimation (ER, FRB, JPV), pp. 1157–1165.
- ICML-2012-BachLO #algorithm #equivalence #on the
- On the Equivalence between Herding and Conditional Gradient Algorithms (FRB, SLJ, GO), p. 176.
- ICML-2012-JoulinB #classification
- A convex relaxation for weakly supervised classifiers (AJ, FRB), p. 171.
- ICML-2011-HockingVBJ #algorithm #clustering #named #using
- Clusterpath: an Algorithm for Clustering using Convex Fusion Penalties (TH, JPV, FRB, AJ), pp. 745–752.
- ICML-2010-JenattonMOB #learning #taxonomy
- Proximal Methods for Sparse Hierarchical Dictionary Learning (RJ, JM, GO, FRB), pp. 487–494.
- ICML-2009-MairalBPS #learning #online #taxonomy
- Online dictionary learning for sparse coding (JM, FRB, JP, GS), pp. 689–696.
- ICML-2008-Bach #graph #kernel
- Graph kernels between point clouds (FRB), pp. 25–32.
- ICML-2008-Bach08a #consistency #estimation #named
- Bolasso: model consistent Lasso estimation through the bootstrap (FRB), pp. 33–40.
- ICML-2007-RakotomamonjyBCG #kernel #learning #multi #performance
- More efficiency in multiple kernel learning (AR, FRB, SC, YG), pp. 775–782.
- ICML-2007-dAspremontBG #analysis #component
- Full regularization path for sparse principal component analysis (Ad, FRB, LEG), pp. 177–184.
- ICML-2005-BachJ #composition #kernel #predict #rank
- Predictive low-rank decomposition for kernel methods (FRB, MIJ), pp. 33–40.
- ICML-2004-BachLJ #algorithm #kernel #learning #multi
- Multiple kernel learning, conic duality, and the SMO algorithm (FRB, GRGL, MIJ).