BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Collaborated with:
Julian Togelius Mohamed Abou-Zleikha Georgios N. Yannakakis Mohammad Shaker Miguel Nicolau Michael O'Neill 0001 Sergey Karakovskiy S.Asteriadis K.Karpouzis Mhd Hasan Sarhan Ola Al Naameh Britton Horn Steve Dahlskog G.Smith Likith Poovanna Vinay Sudha Ethiraj Stefan J. Johansson R.G.Reynolds Leonard Kinnaird-Heether Tom Schumann Marcus Gallagher
Talks about:
content (6) generat (5) player (5) mario (5) game (5) model (4) level (4) use (4) toward (3) learn (3)

Person: Noor Shaker

DBLP DBLP: Shaker:Noor

Contributed to:

AIIDE 20102010
CIG 20102010
CIG 20112011
AIIDE 20122012
CIG 20122012
VS-Games 20122012
AIIDE 20132013
CIG 20132013
AIIDE 20142014
FDG 20142014
AIIDE 20152015
FDG 20152015
CIG 20162016

Wrote 18 papers:

AIIDE-2010-ShakerYT #automation #framework #game studies #generative #personalisation #platform #towards
Towards Automatic Personalized Content Generation for Platform Games (NS, GNY, JT).
CIG-2010-KarakovskiySTY
The Mario AI Championship (SK, NS, JT, GNY), pp. 1–3.
CIG-2011-ShakerYT #analysis #game studies #modelling #quality
Feature analysis for modeling game content quality (NS, GNY, JT), pp. 126–133.
AIIDE-2012-ShakerYTNO #evolution #personalisation #using
Evolving Personalized Content for Super Mario Bros Using Grammatical Evolution (NS, GNY, JT, MN, MO0).
CIG-2012-ShakerNYTO #evolution #using
Evolving levels for Super Mario Bros using grammatical evolution (NS, MN, GNY, JT, MO0), pp. 304–311.
VS-Games-2012-AsteriadisKSY #behaviour #clustering #detection #towards #using #visual notation
Towards Detecting Clusters of Players using Visual and Gameplay Behavioral Cues (SA, KK, NS, GNY), pp. 140–147.
AIIDE-2013-ShakerST #approach #evolution
Evolving Playable Content for Cut the Rope through a Simulation-Based Approach (NS, MS, JT).
AIIDE-2013-ShakerST13a #authoring #design #named #optimisation
Ropossum: An Authoring Tool for Designing, Optimizing and Solving Cut the Rope Levels (NS, MS, JT).
CIG-2013-ShakerSNST #analysis #automation #game studies #generative
Automatic generation and analysis of physics-based puzzle games (MS, MHS, OAN, NS, JT), pp. 1–8.
CIG-2013-ShakerTYPEJRKSG #evaluation
The turing test track of the 2012 Mario AI Championship: Entries and evaluation (NS, JT, GNY, LP, VSE, SJJ, RGR, LKH, TS, MG), pp. 1–8.
AIIDE-2014-Abou-ZleikhaS #authoring #design #matrix #named #using
PaTux: An Authoring Tool for Level Design through Pattern Customisation Using Non-Negative Matrix Factorization (MAZ, NS).
AIIDE-2014-ShakerA #approach #combinator #game studies #generative
Alone We Can Do So Little, Together We Can Do So Much: A Combinatorial Approach for Generating Game Content (NS, MAZ).
FDG-2014-HornDSST #comparative #evaluation #framework #generative
A comparative evaluation of procedural level generators in the Mario AI framework (BH, SD, NS, GS, JT).
FDG-2014-TogeliusSY #modelling
Active player modelling (JT, NS, GNY).
AIIDE-2015-ShakerSA #experience #modelling #towards
Towards Generic Models of Player Experience (NS, MS, MAZ), pp. 191–197.
FDG-2015-ShakerAS #learning #modelling
Active Learning for Player Modeling (NS, MAZ, MS).
CIG-2016-Shaker #framework #generative #learning #motivation
Intrinsically motivated reinforcement learning: A promising framework for procedural content generation (NS), pp. 1–8.
CIG-2016-ShakerA #experience #learning #predict
Transfer learning for cross-game prediction of player experience (NS, MAZ), pp. 1–8.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.