BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Finland
1 × France
1 × Italy
1 × Japan
1 × Spain
1 × Switzerland
1 × USA
2 × Austria
2 × United Kingdom
Collaborated with:
S.Müller L.Chew N.Galesi M.Lauria O.Kullmann A.Meier M.Thomas H.Vollmer K.Sreenivasaiah J.Köbler M.Mahajan A.Shukla A.A.Razborov
Talks about:
complex (6) resolut (3) prove (3) logic (3) characteris (2) parameter (2) proposit (2) theorem (2) default (2) proof (2)

Person: Olaf Beyersdorff

DBLP DBLP: Beyersdorff:Olaf

Contributed to:

ICALP (1) 20152015
LATA 20152015
IJCAR 20142014
SAT 20142014
SAT 20132013
ICALP (1) 20112011
SAT 20112011
SAT 20102010
LATA 20092009
SAT 20092009
CSL 20082008

Wrote 12 papers:

ICALP-v1-2015-BeyersdorffCMS #calculus
Feasible Interpolation for QBF Resolution Calculi (OB, LC, MM, AS), pp. 180–192.
LATA-2015-BeyersdorffCS #game studies
A Game Characterisation of Tree-like Q-resolution Size (OB, LC, KS), pp. 486–498.
IJCAR-2014-BeyersdorffC #complexity #proving #theorem proving
The Complexity of Theorem Proving in Circumscription and Minimal Entailment (OB, LC), pp. 403–417.
SAT-2014-BeyersdorffK #metric
Unified Characterisations of Resolution Hardness Measures (OB, OK), pp. 170–187.
SAT-2013-Beyersdorff #complexity #logic #proving #theorem proving
The Complexity of Theorem Proving in Autoepistemic Logic (OB), pp. 365–376.
ICALP-v1-2011-BeyersdorffGLR #bound
Parameterized Bounded-Depth Frege Is Not Optimal (OB, NG, ML, AAR), pp. 630–641.
SAT-2011-BeyersdorffGL #complexity
Parameterized Complexity of DPLL Search Procedures (OB, NG, ML), pp. 5–18.
SAT-2010-BeyersdorffMMTV #complexity #logic #proving
Proof Complexity of Propositional Default Logic (OB, AM, SM, MT, HV), pp. 30–43.
LATA-2009-BeyersdorffKM #complexity #nondeterminism #proving
Nondeterministic Instance Complexity and Proof Systems with Advice (OB, JK, SM), pp. 164–175.
SAT-2009-BeyersdorffM #question
Does Advice Help to Prove Propositional Tautologies? (OB, SM), pp. 65–72.
SAT-2009-BeyersdorffMTV #complexity #logic #reasoning
The Complexity of Reasoning for Fragments of Default Logic (OB, AM, MT, HV), pp. 51–64.
CSL-2008-BeyersdorffM #bound
A Tight Karp-Lipton Collapse Result in Bounded Arithmetic (OB, SM), pp. 199–214.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.