Travelled to:
1 × Canada
1 × Denmark
6 × USA
Collaborated with:
∅ A.Bhowmick Z.Dvir H.Hatami Y.Dodis J.Zhang D.Gavinsky D.Aggarwal G.Kuperberg R.Peled Y.T.Kalai R.Meshulam A.Samorodnitsky M.Göös R.Meka T.Watson D.Zuckerman A.Bhattacharyya E.Fischer P.Hatami
Talks about:
conjectur (2) properti (2) invari (2) bound (2) affin (2) rank (2) code (2) new (2) pseudorandom (1) cryptographi (1)
Person: Shachar Lovett
DBLP: Lovett:Shachar
Contributed to:
Wrote 14 papers:
- STOC-2015-BhowmickL
- The List Decoding Radius of Reed-Muller Codes over Small Fields (AB, SL), pp. 277–285.
- STOC-2015-GoosLM0Z
- Rectangles Are Nonnegative Juntas (MG, SL, RM, TW, DZ), pp. 257–266.
- STOC-2015-LovettZ #difference
- Improved Noisy Population Recovery, and Reverse Bonami-Beckner Inequality for Sparse Functions (SL, JZ), pp. 137–142.
- ICALP-v1-2014-GavinskyL #reduction
- En Route to the Log-Rank Conjecture: New Reductions and Equivalent Formulations (DG, SL), pp. 514–524.
- STOC-2014-AggarwalDL #combinator
- Non-malleable codes from additive combinatorics (DA, YD, SL), pp. 774–783.
- STOC-2014-Lovett #bound #communication #rank
- Communication is bounded by root of rank (SL), pp. 842–846.
- STOC-2013-BhattacharyyaFHHL #invariant
- Every locally characterized affine-invariant property is testable (AB, EF, HH, PH, SL), pp. 429–436.
- STOC-2013-BhowmickDL #bound #product line
- New bounds for matching vector families (AB, ZD, SL), pp. 823–832.
- STOC-2012-DvirL #set
- Subspace evasive sets (ZD, SL), pp. 351–358.
- STOC-2012-KuperbergLP #combinator #probability
- Probabilistic existence of rigid combinatorial structures (GK, SL, RP), pp. 1091–1106.
- STOC-2011-HatamiL #correlation #fault #invariant #testing
- Correlation testing for affine invariant properties on Fpn in the high error regime (HH, SL), pp. 187–194.
- STOC-2009-DodisKL #encryption #on the
- On cryptography with auxiliary input (YD, YTK, SL), pp. 621–630.
- STOC-2008-Lovett #generative #pseudo
- Unconditional pseudorandom generators for low degree polynomials (SL), pp. 557–562.
- STOC-2008-LovettMS
- Inverse conjecture for the gowers norm is false (SL, RM, AS), pp. 547–556.