28 papers:
ICPR-2014-FuGYGY #detection #graph- Graph Construction for Salient Object Detection in Videos (KF, IYHG, YY, CG, JY), pp. 2371–2376.
VLDB-2012-CandanRSW #constraints #named #using- sDTW: Computing DTW Distances using Locally Relevant Constraints based on Salient Feature Alignments (KSC, RR, MLS, XW), pp. 1519–1530.
ICPR-2012-ChenH0N #classification #documentation- Structured document classification by matching local salient features (SC, YH, JS, SN), pp. 653–656.
ICPR-2012-CheungP #detection #using- Salient region detection using local and global saliency (YmC, QP), pp. 210–213.
DRR-2011-FanSNMH #feature model #recognition- Natural scene logo recognition by joint boosting feature selection in salient regions (WF, JS, SN, AM, YH), pp. 1–10.
ICDAR-2011-YangW #segmentation #visual notation- Segmentation of Graphical Objects as Maximally Stable Salient Regions (SY, YW), pp. 187–191.
ICPR-2010-BrezovanBGSS #adaptation #detection #image #performance #visual notation- An Adaptive Method for Efficient Detection of Salient Visual Object from Color Images (MB, DDB, EG, LS, CSS), pp. 2346–2349.
ICPR-2010-ConteFPTV #detection #people- Counting Moving People in Videos by Salient Points Detection (DC, PF, GP, FT, MV), pp. 1743–1746.
ICPR-2010-PaivaT #detection #image #using- Detection of Salient Image Points Using Principal Subspace Manifold Structure (ARCP, TT), pp. 1389–1392.
CHI-2009-BuscherCM #eye tracking #predict #using #web #what- What do you see when you’re surfing?: using eye tracking to predict salient regions of web pages (GB, EC, MRM), pp. 21–30.
ICPR-2008-HuangST08a #approximate- Approximation of salient contours in cluttered scenes (RH, NS, QT), pp. 1–4.
ICPR-2008-LiuZDY #detection #learning #sequence #video- Video attention: Learning to detect a salient object sequence (TL, NZ, WD, ZY), pp. 1–4.
ICPR-2008-ShoemakerBHBK #detection #performance- Detecting and ordering salient regions for efficient browsing (LS, REB, LOH, KWB, WPK), pp. 1–4.
ICPR-2008-TeynorB #classification- Wavelet-based salient points with scale information for classification (AT, HB), pp. 1–5.
ICPR-v2-2006-LiLG #multi- Multi-Resolution Curve Alignment Based on Salient Features (ZL, XL, CG), pp. 357–360.
ICPR-v2-2006-WangLC #locality- Topological Localization Based on Salient Regions in Unknown Environments (LW, YL, ZC), pp. 369–372.
ICPR-v3-2006-PalenichkaZ #image #network #using- Perceptual Knowledge Extraction Using Bayesian Networks of Salient Image Objects (RMP, MBZ), pp. 1216–1219.
ICPR-v4-2006-PalenichkaZ06a #image #network #using- Perceptual Knowledge Extraction Using Bayesian Networks of Salient Image Objects (RMP, MBZ), p. 953.
SEKE-2006-WuHY #clustering #ranking- Salient Phrases-based Clustering and Ranking in Chinese Bulletin Board System (XW, SH, YY), pp. 73–78.
SIGIR-2005-MagalhaesR #concept #incremental #information management #mining #multi- Mining multimedia salient concepts for incremental information extraction (JM, SMR), pp. 641–642.
ICPR-v2-2004-HalawaniB #evaluation #image #kernel #retrieval- Image Retrieval by Local Evaluation of Nonlinear Kernel Functions around Salient Points (AH, HB), pp. 955–960.
ICPR-v2-2004-KoKB #image #retrieval- SVM-based Salient Region(s) Extraction Method for Image Retrieval (BK, SYK, HB), pp. 977–980.
ICPR-v4-2004-FraundorferBO #image #locality- Natural, Salient Image Patches for Robot Localization (FF, HB, SO), pp. 881–884.
SIGIR-2004-FanGLX #automation #concept #image #representation #using- Automatic image annotation by using concept-sensitive salient objects for image content representation (JF, YG, HL, GX), pp. 361–368.
CIKM-2002-CooperCB #detection #documentation #using- Detecting similar documents using salient terms (JWC, AC, EWB), pp. 245–251.
ICPR-v2-2002-MichaelsenSS #industrial #recognition- Grouping Salient Scatterers in InSAR Data for Recognition of Industrial Buildings (EM, US, US), pp. 613–616.
CIKM-2001-PonceleonS #automation #speech- Automatic Discovery of Salient Segments in Imperfect Speech Transcripts (DBP, SS), pp. 490–497.
ICPR-1998-Nakajima #image #using #visual notation- Extraction of salient apexes from an image by using the function at the primary visual cortex (CN), pp. 720–724.