Petra Perner
Proceedings of the Eighth International Conference on Machine Learning and Data Mining in Pattern Recognition
MLDM, 2012.
@proceedings{MLDM-2012, address = "Berlin, Germany", doi = "10.1007/978-3-642-31537-4", editor = "Petra Perner", isbn = "978-3-642-31536-7", publisher = "{Springer International Publishing}", series = "{Lecture Notes in Computer Science}", title = "{Proceedings of the Eighth International Conference on Machine Learning and Data Mining in Pattern Recognition}", volume = 7376, year = 2012, }
Contents (51 items)
- MLDM-2012-TurkovKM #approach #concept #pattern matching #pattern recognition #problem #recognition
- Bayesian Approach to the Concept Drift in the Pattern Recognition Problems (PAT, OK, VM), pp. 1–10.
- MLDM-2012-CeciAVMPG #classification #paradigm #relational
- Transductive Relational Classification in the Co-training Paradigm (MC, AA, HLV, DM, EP, HG), pp. 11–25.
- MLDM-2012-YangW #classification #modelling
- Generalized Nonlinear Classification Model Based on Cross-Oriented Choquet Integral (RY, ZW), pp. 26–39.
- MLDM-2012-NguyenF #programming
- A General Lp-norm Support Vector Machine via Mixed 0-1 Programming (HTN, KF), pp. 40–49.
- MLDM-2012-Kovacs #distance #reduction
- Reduction of Distance Computations in Selection of Pivot Elements for Balanced GHT Structure (LK), pp. 50–62.
- MLDM-2012-JoenssenB
- Hot Deck Methods for Imputing Missing Data — The Effects of Limiting Donor Usage (DWJ, UB), pp. 63–75.
- MLDM-2012-BharambeDP #named #performance
- BINER — BINary Search Based Efficient Regression (SB, HD, VP), pp. 76–85.
- MLDM-2012-MondalPMMB #approach #clustering #concept analysis #mining #using
- A New Approach for Association Rule Mining and Bi-clustering Using Formal Concept Analysis (KCM, NP, AM, UM, SB), pp. 86–101.
- MLDM-2012-LiHO #approach #correlation #mining
- Top-N Minimization Approach for Indicative Correlation Change Mining (AL, MH, YO), pp. 102–116.
- MLDM-2012-LeiteBV #algorithm #classification #testing
- Selecting Classification Algorithms with Active Testing (RL, PB, JV), pp. 117–131.
- MLDM-2012-Thombre #classification #network
- Comparing Logistic Regression, Neural Networks, C5.0 and M5′ Classification Techniques (AT), pp. 132–140.
- MLDM-2012-SapkotaBS #grammar inference #principle #using
- Unsupervised Grammar Inference Using the Minimum Description Length Principle (US, BRB, APS), pp. 141–153.
- MLDM-2012-OshiroPB #how #question #random
- How Many Trees in a Random Forest? (TMO, PSP, JAB), pp. 154–168.
- MLDM-2012-XuCG #concept #learning #multi #using
- Constructing Target Concept in Multiple Instance Learning Using Maximum Partial Entropy (TX, DKYC, IG), pp. 169–182.
- MLDM-2012-BouhamedMLR #heuristic #learning #network
- A New Learning Structure Heuristic of Bayesian Networks from Data (HB, AM, TL, AR), pp. 183–197.
- MLDM-2012-PitelisT #learning
- Discriminant Subspace Learning Based on Support Vectors Machines (NP, AT), pp. 198–212.
- MLDM-2012-HoaD #learning
- A New Learning Strategy of General BAMs (NTH, TDB), pp. 213–221.
- MLDM-2012-ToussaintB #comparison #empirical #learning
- Proximity-Graph Instance-Based Learning, Support Vector Machines, and High Dimensionality: An Empirical Comparison (GTT, CB), pp. 222–236.
- MLDM-2012-EbrahimiA #approach #clustering
- Semi Supervised Clustering: A Pareto Approach (JE, MSA), pp. 237–251.
- MLDM-2012-SilvaA #case study #clustering
- Semi-supervised Clustering: A Case Study (AS, CA), pp. 252–263.
- MLDM-2012-IsakssonDH #clustering #data type #named
- SOStream: Self Organizing Density-Based Clustering over Data Stream (CI, MHD, MH), pp. 264–278.
- MLDM-2012-TaTB #approach #clustering #data type #using
- Clustering Data Stream by a Sub-window Approach Using DCA (MTT, LTHA, LBA), pp. 279–292.
- MLDM-2012-VlaseMI #clustering #metadata #using
- Improvement of K-means Clustering Using Patents Metadata (MV, DM, AI), pp. 293–305.
- MLDM-2012-ChanguelL #independence #machine learning #metadata #problem
- Content Independent Metadata Production as a Machine Learning Problem (SC, NL), pp. 306–320.
- MLDM-2012-SiLQD #web
- Discovering K Web User Groups with Specific Aspect Interests (JS, QL, TQ, XD), pp. 321–335.
- MLDM-2012-BorawskiF #algorithm #automation #estimation #image
- An Algorithm for the Automatic Estimation of Image Orientation (MB, DF), pp. 336–344.
- MLDM-2012-JiangLS #correlation #image #multi
- Multi-label Image Annotation Based on Neighbor Pair Correlation Chain (GJ, XL, ZS), pp. 345–354.
- MLDM-2012-PirasGP #approach #image #retrieval
- Enhancing Image Retrieval by an Exploration-Exploitation Approach (LP, GG, RP), pp. 355–365.
- MLDM-2012-KhanCDE #3d #case study #correlation #incremental #symmetry
- Finding Correlations between 3-D Surfaces: A Study in Asymmetric Incremental Sheet Forming (MSK, FC, CD, SES), pp. 366–379.
- MLDM-2012-HossainC #behaviour #identification
- Combination of Physiological and Behavioral Biometric for Human Identification (EH, GC), pp. 380–393.
- MLDM-2012-GlodekSP #detection #process #recognition
- Detecting Actions by Integrating Sequential Symbolic and Sub-symbolic Information in Human Activity Recognition (MG, FS, GP), pp. 394–404.
- MLDM-2012-PiatkowskaM #recognition
- Computer Recognition of Facial Expressions of Emotion (EP, JM), pp. 405–414.
- MLDM-2012-KalpakisYHMSSS #analysis #permutation #predict #using
- Outcome Prediction for Patients with Severe Traumatic Brain Injury Using Permutation Entropy Analysis of Electronic Vital Signs Data (KK, SY, PFMH, CFM, LGS, DMS, TMS), pp. 415–426.
- MLDM-2012-Ba-KaraitSS #classification #hybrid #optimisation #using
- EEG Signals Classification Using a Hybrid Method Based on Negative Selection and Particle Swarm Optimization (NOSBK, SMS, RS), pp. 427–438.
- MLDM-2012-JoutsijokiJ #case study #dataset
- DAGSVM vs. DAGKNN: An Experimental Case Study with Benthic Macroinvertebrate Dataset (HJ, MJ), pp. 439–453.
- MLDM-2012-NascimentoPS #classification #image #using
- Lung Nodules Classification in CT Images Using Shannon and Simpson Diversity Indices and SVM (LBN, ACdP, ACS), pp. 454–466.
- MLDM-2012-StaroszczykOM #analysis #comparative #feature model #recognition
- Comparative Analysis of Feature Selection Methods for Blood Cell Recognition in Leukemia (TS, SO, TM), pp. 467–481.
- MLDM-2012-CarvalhoPS #classification #image #using
- Classification of Breast Tissues in Mammographic Images in Mass and Non-mass Using McIntosh’s Diversity Index and SVM (PMdSC, ACdP, ACS), pp. 482–494.
- MLDM-2012-Garcia-ConstantinoCNRS #approach #automation #classification #summary
- A Semi-Automated Approach to Building Text Summarisation Classifiers (MGC, FC, PJN, AR, CS), pp. 495–509.
- MLDM-2012-MaiorcaGC #detection #pattern matching #pattern recognition #recognition
- A Pattern Recognition System for Malicious PDF Files Detection (DM, GG, IC), pp. 510–524.
- MLDM-2012-Moreira-MatiasMGB #categorisation #classification #matrix #using
- Text Categorization Using an Ensemble Classifier Based on a Mean Co-association Matrix (LMM, JMM, JG, PB), pp. 525–539.
- MLDM-2012-PipanmaekapornL #effectiveness #mining
- A Pattern Discovery Model for Effective Text Mining (LP, YL), pp. 540–554.
- MLDM-2012-PaliwalP #clustering #documentation #segmentation
- Investigating Usage of Text Segmentation and Inter-passage Similarities to Improve Text Document Clustering (SP, VP), pp. 555–565.
- MLDM-2012-MacchiaCM #mining #modelling #network #ranking
- Mining Ranking Models from Dynamic Network Data (LM, MC, DM), pp. 566–577.
- MLDM-2012-TabatabaeiAKK #classification #internet #machine learning
- Machine Learning-Based Classification of Encrypted Internet Traffic (TST, MA, FK, MK), pp. 578–592.
- MLDM-2012-SyarifZPW #detection
- Application of Bagging, Boosting and Stacking to Intrusion Detection (IS, EZ, APB, GW), pp. 593–602.
- MLDM-2012-ForczmanskiF #classification #distance #representation
- Classification of Elementary Stamp Shapes by Means of Reduced Point Distance Histogram Representation (PF, DF), pp. 603–616.
- MLDM-2012-DiezC #approach #classification #multi #predict
- A Multiclassifier Approach for Drill Wear Prediction (AD, AC), pp. 617–630.
- MLDM-2012-WangYL #corpus
- Measuring the Dynamic Relatedness between Chinese Entities Orienting to News Corpus (ZW, JY, XL), pp. 631–644.
- MLDM-2012-Herrera-YagueZ #network #predict
- Prediction of Telephone User Attributes Based on Network Neighborhood Information (CHY, PJZ), pp. 645–659.
- MLDM-2012-SinghCS #approach #hybrid #performance #recognition #using
- A Hybrid Approach to Increase the Performance of Protein Folding Recognition Using Support Vector Machines (LS, GC, DS), pp. 660–668.
12 ×#classification
11 ×#using
9 ×#approach
7 ×#clustering
6 ×#recognition
5 ×#image
5 ×#learning
4 ×#mining
4 ×#network
3 ×#case study
11 ×#using
9 ×#approach
7 ×#clustering
6 ×#recognition
5 ×#image
5 ×#learning
4 ×#mining
4 ×#network
3 ×#case study