`Travelled to:`

1 × Canada

1 × China

1 × Greece

1 × Iceland

1 × Latvia

5 × USA

`Collaborated with:`

K.Onak R.Krauthgamer I.Razenshteyn R.Rubinfeld I.P.Razenshteyn R.Panigrahy G.Valiant L.Zhang A.Nikolov G.Yaroslavtsev H.L.Nguyên Y.Polyanskiy Y.Wu A.Goldberger A.McGregor E.Porat P.Indyk R.Fagin R.Kumar M.Patrascu D.Sivakumar N.Alon T.Kaufman K.Matulef N.Xie

`Talks about:`

distanc (3) sketch (3) edit (3) approxim (2) linear (2) wise (2) near (2) fingerprint (1) corrigendum (1) sivakumar (1)

## Person: Alexandr Andoni

### DBLP: Andoni:Alexandr

### Contributed to:

### Wrote 11 papers:

- STOC-2015-AndoniKR #sketching
- Sketching and Embedding are Equivalent for Norms (AA, RK, IPR), pp. 479–488.
- STOC-2015-AndoniR #approximate
- Optimal Data-Dependent Hashing for Approximate Near Neighbors (AA, IR), pp. 793–801.
- ICML-c2-2014-AndoniPV0 #learning #network
- Learning Polynomials with Neural Networks (AA, RP, GV, LZ), pp. 1908–1916.
- STOC-2014-AndoniNOY #algorithm #geometry #graph #parallel #problem
- Parallel algorithms for geometric graph problems (AA, AN, KO, GY), pp. 574–583.
- ICALP-v1-2013-AndoniNPW #bound #linear #sketching
- Tight Lower Bound for Linear Sketches of Moments (AA, HLN, YP, YW), pp. 25–32.
- STOC-2013-AndoniGMP #sketching
- Homomorphic fingerprints under misalignments: sketching edit and shift distances (AA, AG, AM, EP), pp. 931–940.
- ICALP-v1-2009-AndoniIOR
- External Sampling (AA, PI, KO, RR), pp. 83–94.
- STOC-2009-AndoniO #approximate #distance #edit distance
- Approximating edit distance in near-linear time (AA, KO), pp. 199–204.
- ICALP-A-2008-AndoniK #complexity #distance #edit distance
- The Smoothed Complexity of Edit Distance (AA, RK), pp. 357–369.
- SIGMOD-2008-AndoniFKPS #classification #performance #rank #similarity
- Corrigendum to “efficient similarity search and classification via rank aggregation” by Ronald Fagin, Ravi Kumar and D. Sivakumar (proc. SIGMOD’03) (AA, RF, RK, MP, DS), pp. 1375–1376.
- STOC-2007-AlonAKMRX #independence #testing
- Testing k-wise and almost k-wise independence (NA, AA, TK, KM, RR, NX), pp. 496–505.