Travelled to:
1 × Australia
1 × Canada
1 × China
1 × Denmark
1 × Egypt
1 × Finland
1 × France
1 × Germany
1 × Greece
1 × Latvia
1 × Portugal
1 × Spain
1 × United Kingdom
17 × USA
Collaborated with:
∅ V.Guruswami R.Motwani S.Muthukrishnan R.Rubinfeld S.Guha M.Badoiu E.Price C.Hegde L.Schmidt R.Levi M.Strauss N.Koudas A.Backurs I.Razenshteyn G.Cormode D.P.Woodruff A.C.Gilbert M.Charikar R.Panigrahy S.Har-Peled A.Gionis S.Chakrabarti B.Dom B.S.Chlebus A.Gambin S.Madden S.Mahabadi M.Mahdian V.S.Mirrokni H.Hassanieh D.Katabi A.Andoni K.Onak R.Berinde M.J.Strauss A.Czumaj C.Sohler J.Chuzhoy A.Sidiropoulos M.Lewenstein O.Lipsky E.Porat N.Thaper M.Datar M.Gavrilov D.Anguelov P.Raghavan S.Vempala A.Kim E.Blais A.G.Parameswaran Y.Kotidis N.Sundaram A.Turmukhametova N.Satish T.Mostak P.Dubey
Talks about:
time (11) linear (7) approxim (6) histogram (5) stream (5) optim (5) near (5) data (5) algorithm (4) problem (4)
Person: Piotr Indyk
DBLP: Indyk:Piotr
Contributed to:
Wrote 39 papers:
- ICML-2015-HegdeIS #framework
- A Nearly-Linear Time Framework for Graph-Structured Sparsity (CH, PI, LS), pp. 928–937.
- PODS-2015-IndykLR #approximate #testing
- Erratum for: Approximating and Testing k-Histogram Distributions in Sub-linear Time (PI, RL, RR), p. 343.
- STOC-2015-BackursI #distance #edit distance
- Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false) (AB, PI), pp. 51–58.
- VLDB-2015-KimBPIMR #agile #visualisation
- Rapid Sampling for Visualizations with Ordering Guarantees (AK, EB, AGP, PI, SM, RR), pp. 521–532.
- ICALP-v1-2014-HegdeIS #linear #modelling
- Nearly Linear-Time Model-Based Compressive Sensing (CH, PI, LS), pp. 588–599.
- PODS-2014-IndykMMM #composition
- Composable core-sets for diversity and coverage maximization (PI, SM, MM, VSM), pp. 100–108.
- ICALP-v1-2013-IndykR #matrix #modelling #on the
- On Model-Based RIP-1 Matrices (PI, IR), pp. 564–575.
- PODS-2013-Indyk #fourier #sketching
- Sketching via hashing: from heavy hitters to compressed sensing to sparse fourier transform (PI), pp. 87–90.
- VLDB-2013-SundaramTSMIMD #parallel #similarity #streaming #twitter #using
- Streaming Similarity Search over one Billion Tweets using Parallel Locality-Sensitive Hashing (NS, AT, NS, TM, PI, SM, PD), pp. 1930–1941.
- PODS-2012-IndykLR #approximate #testing
- Approximating and testing k-histogram distributions in sub-linear time (PI, RL, RR), pp. 15–22.
- STOC-2012-HassaniehIKP #fourier
- Nearly optimal sparse fourier transform (HH, PI, DK, EP), pp. 563–578.
- STOC-2011-IndykP #clustering #distance #modelling
- K-median clustering, model-based compressive sensing, and sparse recovery for earth mover distance (PI, EP), pp. 627–636.
- ICALP-v1-2009-AndoniIOR
- External Sampling (AA, PI, KO, RR), pp. 83–94.
- PODS-2009-BerindeCIS #bound #fault
- Space-optimal heavy hitters with strong error bounds (RB, GC, PI, MJS), pp. 157–166.
- STOC-2007-Indyk #nondeterminism
- Uncertainty principles, extractors, and explicit embeddings of l2 into l1 (PI), pp. 615–620.
- ICALP-2005-BadoiuCIS #sublinear
- Facility Location in Sublinear Time (MB, AC, PI, CS), pp. 866–877.
- STOC-2005-BadoiuCIS #metric
- Low-distortion embeddings of general metrics into the line (MB, JC, PI, AS), pp. 225–233.
- STOC-2005-IndykW #approximate #data type
- Optimal approximations of the frequency moments of data streams (PI, DPW), pp. 202–208.
- ICALP-2004-GuruswamiI #linear
- Linear-Time List Decoding in Error-Free Settings: (VG, PI), pp. 695–707.
- ICALP-2004-IndykLLP #problem
- Closest Pair Problems in Very High Dimensions (PI, ML, OL, EP), pp. 782–792.
- STOC-2004-Indyk #algorithm #data type #geometry #problem
- Algorithms for dynamic geometric problems over data streams (PI), pp. 373–380.
- STOC-2003-GuruswamiI #linear
- Linear time encodable and list decodable codes (VG, PI), pp. 126–135.
- ICALP-2002-CharikarIP #algorithm #orthogonal #problem #query #set
- New Algorithms for Subset Query, Partial Match, Orthogonal Range Searching, and Related Problems (MC, PI, RP), pp. 451–462.
- ICALP-2002-GuhaIMS #data type #performance
- Histogramming Data Streams with Fast Per-Item Processing (SG, PI, SM, MS), pp. 681–692.
- SIGMOD-2002-ThaperGIK #multi
- Dynamic multidimensional histograms (NT, SG, PI, NK), pp. 428–439.
- STOC-2002-BadoiuHI #approximate #clustering
- Approximate clustering via core-sets (MB, SHP, PI), pp. 250–257.
- STOC-2002-GilbertGIKMS #algorithm #approximate #maintenance #performance
- Fast, small-space algorithms for approximate histogram maintenance (ACG, SG, PI, YK, SM, MS), pp. 389–398.
- STOC-2002-GilbertGIMS #fourier
- Near-optimal sparse fourier representations via sampling (ACG, SG, PI, SM, MS), pp. 152–161.
- STOC-2002-GuruswamiI #linear
- Near-optimal linear-time codes for unique decoding and new list-decodable codes over smaller alphabets (VG, PI), pp. 812–821.
- VLDB-2002-CormodeDIM #data type #how #using
- Comparing Data Streams Using Hamming Norms (How to Zero In) (GC, MD, PI, SM), pp. 335–345.
- KDD-2000-GavrilovAIM #mining #question
- Mining the stock market (extended abstract): which measure is best? (MG, DA, PI, RM), pp. 487–496.
- VLDB-2000-KoudasIM #identification #roadmap #set #sketching #using
- Identifying Representative Trends in Massive Time Series Data Sets Using Sketches (PI, NK, SM), pp. 363–372.
- STOC-1999-Indyk #algorithm #metric #problem #sublinear
- Sublinear Time Algorithms for Metric Space Problems (PI), pp. 428–434.
- STOC-1999-Indyk99a #combinator #design #symmetry
- Inerpolation of Symmetric Functions and a New Type of Combinatorial Design (PI), pp. 736–740.
- VLDB-1999-GionisIM #similarity
- Similarity Search in High Dimensions via Hashing (AG, PI, RM), pp. 518–529.
- SIGMOD-1998-ChakrabartiDI #categorisation #hypermedia #using
- Enhanced Hypertext Categorization Using Hyperlinks (SC, BD, PI), pp. 307–318.
- STOC-1998-IndykM #approximate #nearest neighbour #towards
- Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality (PI, RM), pp. 604–613.
- STOC-1997-IndykMRV #multi
- Locality-Preserving Hashing in Multidimensional Spaces (PI, RM, PR, SV), pp. 618–625.
- ICALP-1996-ChlebusGI #simulation
- Shared-Memory Simulations on a Faulty-Memory DMM (BSC, AG, PI), pp. 586–597.