Proceedings of the 26th International Conference on Machine Learning
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Andrea Pohoreckyj Danyluk, Léon Bottou, Michael L. Littman
Proceedings of the 26th International Conference on Machine Learning
ICML, 2009.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{ICML-2009,
	address       = "Montreal, Quebec, Canada",
	editor        = "Andrea Pohoreckyj Danyluk and Léon Bottou and Michael L. Littman",
	isbn          = "978-1-60558-516-1",
	publisher     = "{ACM}",
	series        = "{ACM International Conference Proceeding Series}",
	title         = "{Proceedings of the 26th International Conference on Machine Learning}",
	volume        = 382,
	year          = 2009,
}

Contents (170 items)

ICML-2009-AdamsG #learning #named #parametricity
Archipelago: nonparametric Bayesian semi-supervised learning (RPA, ZG), pp. 1–8.
ICML-2009-Cortes #kernel #learning #performance #question
Invited talk: Can learning kernels help performance? (CC), p. 1.
ICML-2009-Freund #game studies #learning #online
Invited talk: Drifting games, boosting and online learning (YF), p. 2.
ICML-2009-AdamsMM #parametricity #process
Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities (RPA, IM, DJCM), pp. 9–16.
ICML-2009-BeygelzimerLZ #machine learning #reduction #summary #tutorial
Tutorial summary: Reductions in machine learning (AB, JL, BZ), p. 12.
ICML-2009-Even-DarM #convergence #summary #tutorial
Tutorial summary: Convergence of natural dynamics to equilibria (EED, VSM), p. 13.
ICML-2009-TrespY #dependence #learning #summary #tutorial
Tutorial summary: Learning with dependencies between several response variables (VT, KY), p. 14.
ICML-2009-WarmuthV #optimisation #overview #perspective #summary #tutorial
Tutorial summary: Survey of boosting from an optimization perspective (MKW, SVNV), p. 15.
ICML-2009-Niv #learning #summary #tutorial
Tutorial summary: The neuroscience of reinforcement learning (YN), p. 16.
ICML-2009-AiolliMS #kernel
Route kernels for trees (FA, GDSM, AS), pp. 17–24.
ICML-2009-BennettBC #information retrieval #machine learning #summary #tutorial
Tutorial summary: Machine learning in IR: recent successes and new opportunities (PNB, MB, KCT), p. 17.
ICML-2009-DasguptaL #learning #summary #tutorial
Tutorial summary: Active learning (SD, JL), p. 18.
ICML-2009-Leskovec #ml #network #scalability #social #summary #tutorial
Tutorial summary: Large social and information networks: opportunities for ML (JL), p. 19.
ICML-2009-Smith #natural language #predict #summary #tutorial
Tutorial summary: Structured prediction for natural language processing (NAS), p. 20.
ICML-2009-AndrzejewskiZC #modelling #topic
Incorporating domain knowledge into topic modeling via Dirichlet Forest priors (DA, XZ, MC), pp. 25–32.
ICML-2009-BaillyDR #analysis #component #grammar inference #problem
Grammatical inference as a principal component analysis problem (RB, FD, LR), pp. 33–40.
ICML-2009-BengioLCW #education #learning
Curriculum learning (YB, JL, RC, JW), pp. 41–48.
ICML-2009-BeygelzimerDL #learning
Importance weighted active learning (AB, SD, JL), pp. 49–56.
ICML-2009-BouchardZ
Split variational inference (GB, OZ), pp. 57–64.
ICML-2009-BoulariasC #policy #predict
Predictive representations for policy gradient in POMDPs (AB, BCd), pp. 65–72.
ICML-2009-BoutilierRV #elicitation #interactive #online #optimisation
Online feature elicitation in interactive optimization (CB, KR, PV), pp. 73–80.
ICML-2009-BuhlerH #clustering #graph
Spectral clustering based on the graph p-Laplacian (TB, MH), pp. 81–88.
ICML-2009-BurlW #learning
Active learning for directed exploration of complex systems (MCB, EW), pp. 89–96.
ICML-2009-BusettoOB
Optimized expected information gain for nonlinear dynamical systems (AGB, CSO, JMB), pp. 97–104.
ICML-2009-CaiWH #consistency #data analysis #probability
Probabilistic dyadic data analysis with local and global consistency (DC, XW, XH), pp. 105–112.
ICML-2009-CamposZJ #constraints #learning #network #using
Structure learning of Bayesian networks using constraints (CPdC, ZZ, QJ), pp. 113–120.
ICML-2009-Cesa-BianchiGO #bound #classification #robust
Robust bounds for classification via selective sampling (NCB, CG, FO), pp. 121–128.
ICML-2009-ChaudhuriKLS #analysis #canonical #clustering #correlation #multi
Multi-view clustering via canonical correlation analysis (KC, SMK, KL, KS), pp. 129–136.
ICML-2009-ChenTLY #learning #multi
A convex formulation for learning shared structures from multiple tasks (JC, LT, JL, JY), pp. 137–144.
ICML-2009-ChenGR #kernel #learning
Learning kernels from indefinite similarities (YC, MRG, BR), pp. 145–152.
ICML-2009-ChengSS #markov #matrix #modelling
Matrix updates for perceptron training of continuous density hidden Markov models (CCC, FS, LKS), pp. 153–160.
ICML-2009-ChengHH #learning #ranking
Decision tree and instance-based learning for label ranking (WC, JCH, EH), pp. 161–168.
ICML-2009-ChoS #analysis #learning #modelling
Learning dictionaries of stable autoregressive models for audio scene analysis (YC, LKS), pp. 169–176.
ICML-2009-ChoiCW #markov #modelling #multi
Exploiting sparse Markov and covariance structure in multiresolution models (MJC, VC, ASW), pp. 177–184.
ICML-2009-ClemenconV #estimation #parametricity
Nonparametric estimation of the precision-recall curve (SC, NV), pp. 185–192.
ICML-2009-DaiJXYY #framework #learning #named
EigenTransfer: a unified framework for transfer learning (WD, OJ, GRX, QY, YY), pp. 193–200.
ICML-2009-DaitchKS #graph
Fitting a graph to vector data (SID, JAK, DAS), pp. 201–208.
ICML-2009-Daume #predict #search-based
Unsupervised search-based structured prediction (HDI), pp. 209–216.
ICML-2009-DavisD #higher-order #logic #markov
Deep transfer via second-order Markov logic (JD, PMD), pp. 217–224.
ICML-2009-DeisenrothHH #process
Analytic moment-based Gaussian process filtering (MPD, MFH, UDH), pp. 225–232.
ICML-2009-DekelS #education
Good learners for evil teachers (OD, OS), pp. 233–240.
ICML-2009-DeodharGGCD #clustering #framework #scalability #semistructured data
A scalable framework for discovering coherent co-clusters in noisy data (MD, GG, JG, HC, ISD), pp. 241–248.
ICML-2009-DiukLL #adaptation #feature model #learning #problem
The adaptive k-meteorologists problem and its application to structure learning and feature selection in reinforcement learning (CD, LL, BRL), pp. 249–256.
ICML-2009-DoLF #learning #online
Proximal regularization for online and batch learning (CBD, QVL, CSF), pp. 257–264.
ICML-2009-DoA #markov #modelling #scalability
Large margin training for hidden Markov models with partially observed states (TMTD, TA), pp. 265–272.
ICML-2009-Doshi-VelezG #process
Accelerated sampling for the Indian Buffet Process (FDV, ZG), pp. 273–280.
ICML-2009-DoyleE #modelling #topic
Accounting for burstiness in topic models (GD, CE), pp. 281–288.
ICML-2009-DuanTXC #adaptation #classification #multi
Domain adaptation from multiple sources via auxiliary classifiers (LD, IWT, DX, TSC), pp. 289–296.
ICML-2009-DuchiS
Boosting with structural sparsity (JCD, YS), pp. 297–304.
ICML-2009-FarhangfarGS #image #learning
Learning to segment from a few well-selected training images (AF, RG, CS), pp. 305–312.
ICML-2009-FloresGMP
GAODE and HAODE: two proposals based on AODE to deal with continuous variables (MJF, JAG, AMM, JMP), pp. 313–320.
ICML-2009-FooDN #algorithm #learning #multi
A majorization-minimization algorithm for (multiple) hyperparameter learning (CSF, CBD, AYN), pp. 321–328.
ICML-2009-FuSX #evolution #network
Dynamic mixed membership blockmodel for evolving networks (WF, LS, EPX), pp. 329–336.
ICML-2009-GargK #algorithm #strict
Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property (RG, RK), pp. 337–344.
ICML-2009-GarnettOR #predict
Sequential Bayesian prediction in the presence of changepoints (RG, MAO, SJR), pp. 345–352.
ICML-2009-GermainLLM #classification #learning #linear
PAC-Bayesian learning of linear classifiers (PG, AL, FL, MM), pp. 353–360.
ICML-2009-GiesekePK #clustering #performance
Fast evolutionary maximum margin clustering (FG, TP, OK), pp. 361–368.
ICML-2009-GomesK #dynamic analysis #multi
Dynamic analysis of multiagent Q-learning with ε-greedy exploration (ERG, RK), pp. 369–376.
ICML-2009-GuiverS #modelling #ranking
Bayesian inference for Plackett-Luce ranking models (JG, ES), pp. 377–384.
ICML-2009-HaiderS #clustering #detection #email
Bayesian clustering for email campaign detection (PH, TS), pp. 385–392.
ICML-2009-HazanS #algorithm #learning #performance
Efficient learning algorithms for changing environments (EH, CS), pp. 393–400.
ICML-2009-Heidrich-MeisnerI #policy
Hoeffding and Bernstein races for selecting policies in evolutionary direct policy search (VHM, CI), pp. 401–408.
ICML-2009-HelleputteD #feature model #linear #modelling
Partially supervised feature selection with regularized linear models (TH, PD), pp. 409–416.
ICML-2009-HuangZM #learning
Learning with structured sparsity (JH, TZ, DNM), pp. 417–424.
ICML-2009-HuangS #learning #linear #sequence
Learning linear dynamical systems without sequence information (TKH, JGS), pp. 425–432.
ICML-2009-JacobOV #graph
Group lasso with overlap and graph lasso (LJ, GO, JPV), pp. 433–440.
ICML-2009-JebaraWC #graph #learning
Graph construction and b-matching for semi-supervised learning (TJ, JW, SFC), pp. 441–448.
ICML-2009-JetchevT #learning #predict
Trajectory prediction: learning to map situations to robot trajectories (NJ, MT), pp. 449–456.
ICML-2009-JiY
An accelerated gradient method for trace norm minimization (SJ, JY), pp. 457–464.
ICML-2009-JohnsonCC #representation
Orbit-product representation and correction of Gaussian belief propagation (JKJ, VYC, MC), pp. 473–480.
ICML-2009-KamisettyL #approach #assessment #quality
A Bayesian approach to protein model quality assessment (HK, CJL), pp. 481–488.
ICML-2009-KarampatziakisK #learning #predict
Learning prediction suffix trees with Winnow (NK, DK), pp. 489–496.
ICML-2009-KeglB #classification
Boosting products of base classifiers (BK, RBF), pp. 497–504.
ICML-2009-KokD #learning #logic #markov #network
Learning Markov logic network structure via hypergraph lifting (SK, PMD), pp. 505–512.
ICML-2009-KolterN #polynomial
Near-Bayesian exploration in polynomial time (JZK, AYN), pp. 513–520.
ICML-2009-KolterN09a #difference #feature model #learning
Regularization and feature selection in least-squares temporal difference learning (JZK, AYN), pp. 521–528.
ICML-2009-KondorSB
The graphlet spectrum (RK, NS, KMB), pp. 529–536.
ICML-2009-KotlowskiS #constraints #learning
Rule learning with monotonicity constraints (WK, RS), pp. 537–544.
ICML-2009-KowalskiSR #kernel #learning #multi
Multiple indefinite kernel learning with mixed norm regularization (MK, MS, LR), pp. 545–552.
ICML-2009-KumarMT #approximate #composition #on the
On sampling-based approximate spectral decomposition (SK, MM, AT), pp. 553–560.
ICML-2009-KunegisL #graph transformation #learning #predict
Learning spectral graph transformations for link prediction (JK, AL), pp. 561–568.
ICML-2009-KuzelkaZ #relational
Block-wise construction of acyclic relational features with monotone irreducibility and relevancy properties (OK, FZ), pp. 569–576.
ICML-2009-LanLML #algorithm #analysis #ranking
Generalization analysis of listwise learning-to-rank algorithms (YL, TYL, ZM, HL), pp. 577–584.
ICML-2009-LangT #approximate #probability #relational
Approximate inference for planning in stochastic relational worlds (TL, MT), pp. 585–592.
ICML-2009-LangfordSZ #learning #modelling
Learning nonlinear dynamic models (JL, RS, TZ), pp. 593–600.
ICML-2009-LawrenceU #matrix #process
Non-linear matrix factorization with Gaussian processes (NDL, RU), pp. 601–608.
ICML-2009-LeeGRN #learning #network #scalability
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations (HL, RBG, RR, AYN), pp. 609–616.
ICML-2009-LiYX #collaboration #generative #learning
Transfer learning for collaborative filtering via a rating-matrix generative model (BL, QY, XX), pp. 617–624.
ICML-2009-Li #adaptation #classification #multi #named
ABC-boost: adaptive base class boost for multi-class classification (PL0), pp. 625–632.
ICML-2009-LiKZ #learning #using
Semi-supervised learning using label mean (YFL, JTK, ZHZ), pp. 633–640.
ICML-2009-LiangJK #exponential #learning #metric #product line
Learning from measurements in exponential families (PL, MIJ, DK), pp. 641–648.
ICML-2009-LiuPZ #coordination #multi #semantics
Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery (HL, MP, JZ), pp. 649–656.
ICML-2009-LiuY #linear #performance
Efficient Euclidean projections in linear time (JL, JY), pp. 657–664.
ICML-2009-LiuNG #community #modelling #topic
Topic-link LDA: joint models of topic and author community (YL, ANM, WG), pp. 665–672.
ICML-2009-LuJD #geometry #learning #metric
Geometry-aware metric learning (ZL, PJ, ISD), pp. 673–680.
ICML-2009-MaSSV #identification #learning #online #scalability
Identifying suspicious URLs: an application of large-scale online learning (JM, LKS, SS, GMV), pp. 681–688.
ICML-2009-MairalBPS #learning #online #taxonomy
Online dictionary learning for sparse coding (JM, FRB, JP, GS), pp. 689–696.
ICML-2009-Makino #network #predict #representation
Proto-predictive representation of states with simple recurrent temporal-difference networks (TM), pp. 697–704.
ICML-2009-MarlinM #modelling #visual notation
Sparse Gaussian graphical models with unknown block structure (BMM, KPM), pp. 705–712.
ICML-2009-MartinsSX #approximate #natural language #parsing
Polyhedral outer approximations with application to natural language parsing (AFTM, NAS, EPX), pp. 713–720.
ICML-2009-McFeeL #kernel #multi #partial order
Partial order embedding with multiple kernels (BM, GRGL), pp. 721–728.
ICML-2009-MesmayRVP #graph #library #optimisation #performance
Bandit-based optimization on graphs with application to library performance tuning (FdM, AR, YV, MP), pp. 729–736.
ICML-2009-MobahiCW #learning #video
Deep learning from temporal coherence in video (HM, RC, JW), pp. 737–744.
ICML-2009-MooijJPS #dependence #modelling
Regression by dependence minimization and its application to causal inference in additive noise models (JMM, DJ, JP, BS), pp. 745–752.
ICML-2009-NeumannMP #learning
Learning complex motions by sequencing simpler motion templates (GN, WM, JP), pp. 753–760.
ICML-2009-NickischS #linear #modelling #scalability
Convex variational Bayesian inference for large scale generalized linear models (HN, MWS), pp. 761–768.
ICML-2009-NowozinJ #clustering #graph #learning #linear #programming
Solution stability in linear programming relaxations: graph partitioning and unsupervised learning (SN, SJ), pp. 769–776.
ICML-2009-PaisleyC #analysis #parametricity #process
Nonparametric factor analysis with beta process priors (JWP, LC), pp. 777–784.
ICML-2009-PanT #modelling
Unsupervised hierarchical modeling of locomotion styles (WP, LT), pp. 785–792.
ICML-2009-PazisL #learning #policy
Binary action search for learning continuous-action control policies (JP, MGL), pp. 793–800.
ICML-2009-PetersJGS #detection
Detecting the direction of causal time series (JP, DJ, AG, BS), pp. 801–808.
ICML-2009-PetrikZ #approximate #constraints #linear #source code
Constraint relaxation in approximate linear programs (MP, SZ), pp. 809–816.
ICML-2009-PlathTN #classification #image #multi #random #segmentation #using
Multi-class image segmentation using conditional random fields and global classification (NP, MT, SN), pp. 817–824.
ICML-2009-PoczosASGS #exclamation #learning
Learning when to stop thinking and do something! (BP, YAY, CS, RG, NRS), pp. 825–832.
ICML-2009-PutthividhyaAN #independence #modelling #topic
Independent factor topic models (DP, HTA, SSN), pp. 833–840.
ICML-2009-QiTZCZ #learning #metric #performance
An efficient sparse metric learning in high-dimensional space via l1-penalized log-determinant regularization (GJQ, JT, ZJZ, TSC, HJZ), pp. 841–848.
ICML-2009-QianJZHW #higher-order #random #sequence
Sparse higher order conditional random fields for improved sequence labeling (XQ, XJ, QZ, XH, LW), pp. 849–856.
ICML-2009-QuattoniCCD #infinity #performance
An efficient projection for l1,infinity regularization (AQ, XC, MC, TD), pp. 857–864.
ICML-2009-RadovanovicNI #nearest neighbour
Nearest neighbors in high-dimensional data: the emergence and influence of hubs (MR, AN, MI), pp. 865–872.
ICML-2009-RainaMN #learning #scalability #using
Large-scale deep unsupervised learning using graphics processors (RR, AM, AYN), pp. 873–880.
ICML-2009-RamanFWDR
The Bayesian group-Lasso for analyzing contingency tables (SR, TJF, PJW, ED, VR), pp. 881–888.
ICML-2009-RaykarYZJFVBM #learning #multi #trust
Supervised learning from multiple experts: whom to trust when everyone lies a bit (VCR, SY, LHZ, AKJ, CF, GHV, LB, LM), pp. 889–896.
ICML-2009-ReidW #bound
Surrogate regret bounds for proper losses (MDR, RCW), pp. 897–904.
ICML-2009-RoyLW #consistency #learning #modelling #probability #visual notation
Learning structurally consistent undirected probabilistic graphical models (SR, TL, MWW), pp. 905–912.
ICML-2009-Rueping #ranking
Ranking interesting subgroups (SR), pp. 913–920.
ICML-2009-Schmidt #process #using
Function factorization using warped Gaussian processes (MNS), pp. 921–928.
ICML-2009-Shalev-ShwartzT #probability
Stochastic methods for l1 regularized loss minimization (SSS, AT), pp. 929–936.
ICML-2009-ShawJ
Structure preserving embedding (BS, TJ), pp. 937–944.
ICML-2009-SilverT #monte carlo #simulation
Monte-Carlo simulation balancing (DS, GT), pp. 945–952.
ICML-2009-SindhwaniML #design #nondeterminism
Uncertainty sampling and transductive experimental design for active dual supervision (VS, PM, RDL), pp. 953–960.
ICML-2009-SongHSF
Hilbert space embeddings of conditional distributions with applications to dynamical systems (LS, JH, AJS, KF), pp. 961–968.
ICML-2009-StreichFBB #clustering #multi
Multi-assignment clustering for Boolean data (APS, MF, DAB, JMB), pp. 969–976.
ICML-2009-SunJY #machine learning #problem
A least squares formulation for a class of generalized eigenvalue problems in machine learning (LS, SJ, JY), pp. 977–984.
ICML-2009-Sutskever #analysis
A simpler unified analysis of budget perceptrons (IS), pp. 985–992.
ICML-2009-SuttonMPBSSW #approximate #learning #linear #performance
Fast gradient-descent methods for temporal-difference learning with linear function approximation (RSS, HRM, DP, SB, DS, CS, EW), pp. 993–1000.
ICML-2009-SzitaL #learning #polynomial
Optimistic initialization and greediness lead to polynomial time learning in factored MDPs (IS, AL), pp. 1001–1008.
ICML-2009-SzlamS
Discriminative k-metrics (AS, GS), pp. 1009–1016.
ICML-2009-TaylorP #approximate #kernel #learning
Kernelized value function approximation for reinforcement learning (GT, RP), pp. 1017–1024.
ICML-2009-TaylorH #modelling #strict
Factored conditional restricted Boltzmann Machines for modeling motion style (GWT, GEH), pp. 1025–1032.
ICML-2009-TielemanH #performance #persistent #using
Using fast weights to improve persistent contrastive divergence (TT, GEH), pp. 1033–1040.
ICML-2009-Tillman #distributed #independence #learning
Structure learning with independent non-identically distributed data (RET), pp. 1041–1048.
ICML-2009-Toussaint #approximate #optimisation #using
Robot trajectory optimization using approximate inference (MT), pp. 1049–1056.
ICML-2009-UsunierBG #classification #order #ranking
Ranking with ordered weighted pairwise classification (NU, DB, PG), pp. 1057–1064.
ICML-2009-VarmaB #kernel #learning #multi #performance
More generality in efficient multiple kernel learning (MV, BRB), pp. 1065–1072.
ICML-2009-NguyenEB #clustering #comparison #metric #question
Information theoretic measures for clusterings comparison: is a correction for chance necessary? (XVN, JE, JB), pp. 1073–1080.
ICML-2009-VlassisT #learning
Model-free reinforcement learning as mixture learning (NV, MT), pp. 1081–1088.
ICML-2009-VolkovsZ #learning #named #ranking
BoltzRank: learning to maximize expected ranking gain (MV, RSZ), pp. 1089–1096.
ICML-2009-WagstaffB #evaluation
K-means in space: a radiation sensitivity evaluation (KLW, BJB), pp. 1097–1104.
ICML-2009-WallachMSM #evaluation #modelling #topic
Evaluation methods for topic models (HMW, IM, RS, DMM), pp. 1105–1112.
ICML-2009-WeinbergerDLSA #learning #multi #scalability
Feature hashing for large scale multitask learning (KQW, AD, JL, AJS, JA), pp. 1113–1120.
ICML-2009-Welling
Herding dynamical weights to learn (MW), pp. 1121–1128.
ICML-2009-WoodAGJT #probability #sequence
A stochastic memoizer for sequence data (FW, CA, JG, LJ, YWT), pp. 1129–1136.
ICML-2009-XuWS #learning #predict
Optimal reverse prediction: a unified perspective on supervised, unsupervised and semi-supervised learning (LX, MW, DS), pp. 1137–1144.
ICML-2009-XuJYLK #feature model
Non-monotonic feature selection (ZX, RJ, JY, MRL, IK), pp. 1145–1152.
ICML-2009-YangJY #learning #online
Online learning by ellipsoid method (LY, RJ, JY), pp. 1153–1160.
ICML-2009-YiWSS #probability #using
Stochastic search using the natural gradient (YS, DW, TS, JS), pp. 1161–1168.
ICML-2009-YuJ #learning
Learning structural SVMs with latent variables (CNJY, TJ), pp. 1169–1176.
ICML-2009-YuM #problem
Piecewise-stationary bandit problems with side observations (JYY, SM), pp. 1177–1184.
ICML-2009-YuLZG #collaboration #parametricity #predict #random #scalability #using
Large-scale collaborative prediction using a nonparametric random effects model (KY, JDL, SZ, YG), pp. 1185–1192.
ICML-2009-YuanH #feature model #learning #robust
Robust feature extraction via information theoretic learning (XY, BGH), pp. 1193–1200.
ICML-2009-YueJ #information retrieval #optimisation #problem
Interactively optimizing information retrieval systems as a dueling bandits problem (YY, TJ), pp. 1201–1208.
ICML-2009-YuilleZ #composition #learning
Compositional noisy-logical learning (ALY, SZ), pp. 1209–1216.
ICML-2009-ZangZMI
Discovering options from example trajectories (PZ, PZ, DM, CLIJ), pp. 1217–1224.
ICML-2009-ZhanLLZ #learning #metric #using
Learning instance specific distances using metric propagation (DCZ, ML, YFL, ZHZ), pp. 1225–1232.
ICML-2009-ZhangKP #learning #prototype #scalability
Prototype vector machine for large scale semi-supervised learning (KZ, JTK, BP), pp. 1233–1240.
ICML-2009-ZhangSFD #learning
Learning non-redundant codebooks for classifying complex objects (WZ, AS, XF, TGD), pp. 1241–1248.
ICML-2009-ZhouSL #learning #multi
Multi-instance learning by treating instances as non-I.I.D. samples (ZHZ, YYS, YFL), pp. 1249–1256.
ICML-2009-ZhuAX #classification #modelling #named #topic
MedLDA: maximum margin supervised topic models for regression and classification (JZ, AA, EPX), pp. 1257–1264.
ICML-2009-ZhuX #markov #network #on the
On primal and dual sparsity of Markov networks (JZ, EPX), pp. 1265–1272.
ICML-2009-ZhuangTH #kernel #learning #named #parametricity
SimpleNPKL: simple non-parametric kernel learning (JZ, IWT, SCHH), pp. 1273–1280.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.