Proceedings of the 27th International Conference on Machine Learning
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Johannes Fürnkranz, Thorsten Joachims
Proceedings of the 27th International Conference on Machine Learning
ICML, 2010.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{ICML-2010,
	address       = "Haifa, Israel",
	editor        = "Johannes Fürnkranz and Thorsten Joachims",
	publisher     = "{Omnipress}",
	title         = "{Proceedings of the 27th International Conference on Machine Learning}",
	year          = 2010,
}

Contents (159 items)

ICML-2010-Apte #machine learning #optimisation
The Role of Machine Learning in Business Optimization (CA), pp. 1–2.
ICML-2010-CumminsN #named #recognition #using #visual notation
FAB-MAP: Appearance-Based Place Recognition and Mapping using a Learned Visual Vocabulary Model (MJC, PMN), pp. 3–10.
ICML-2010-FelzenszwalbGMR #detection #modelling
Discriminative Latent Variable Models for Object Detection (PFF, RBG, DAM, DR), pp. 11–12.
ICML-2010-GraepelCBH #predict
Web-Scale Bayesian Click-Through rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine (TG, JQC, TB, RH), pp. 13–20.
ICML-2010-Raphael #machine learning #music
Music Plus One and Machine Learning (CR), pp. 21–28.
ICML-2010-SnyderB #learning #multi
Climbing the Tower of Babel: Unsupervised Multilingual Learning (BS, RB), pp. 29–36.
ICML-2010-XuHFPJ #detection #mining #problem #scalability
Detecting Large-Scale System Problems by Mining Console Logs (WX, LH, AF, DAP, MIJ), pp. 37–46.
ICML-2010-AsuncionLIS
Particle Filtered MCMC-MLE with Connections to Contrastive Divergence (AUA, QL, ATI, PS), pp. 47–54.
ICML-2010-BardenetK #algorithm #optimisation
Surrogating the surrogate: accelerating Gaussian-process-based global optimization with a mixture cross-entropy algorithm (RB, BK), pp. 55–62.
ICML-2010-BartlettPW #constant #memory management #process
Forgetting Counts: Constant Memory Inference for a Dependent Hierarchical Pitman-Yor Process (NB, DP, FW), pp. 63–70.
ICML-2010-BhadraBBB #kernel #matrix #nondeterminism #robust
Robust Formulations for Handling Uncertainty in Kernel Matrices (SB, SB, CB, ABT), pp. 71–78.
ICML-2010-BilgicMG #learning
Active Learning for Networked Data (MB, LM, LG), pp. 79–86.
ICML-2010-BleiF #distance #process
Distance dependent Chinese restaurant processes (DMB, PIF), pp. 87–94.
ICML-2010-BontempiM #array
Causal filter selection in microarray data (GB, PEM), pp. 95–102.
ICML-2010-BordesUW #ambiguity #learning #ranking #semantics
Label Ranking under Ambiguous Supervision for Learning Semantic Correspondences (AB, NU, JW), pp. 103–110.
ICML-2010-BoureauPL #analysis #recognition #visual notation
A Theoretical Analysis of Feature Pooling in Visual Recognition (YLB, JP, YL), pp. 111–118.
ICML-2010-BouzyM #game studies #learning #matrix #multi
Multi-agent Learning Experiments on Repeated Matrix Games (BB, MM), pp. 119–126.
ICML-2010-BradleyG #learning #random
Learning Tree Conditional Random Fields (JKB, CG), pp. 127–134.
ICML-2010-BshoutyL #clustering #linear #using
Finding Planted Partitions in Nearly Linear Time using Arrested Spectral Clustering (NHB, PML), pp. 135–142.
ICML-2010-Busa-FeketeK #performance #using
Fast boosting using adversarial bandits (RBF, BK), pp. 143–150.
ICML-2010-CaniniSG #categorisation #learning #modelling #process
Modeling Transfer Learning in Human Categorization with the Hierarchical Dirichlet Process (KRC, MMS, TLG), pp. 151–158.
ICML-2010-CaoLY #learning #multi #predict
Transfer Learning for Collective Link Prediction in Multiple Heterogenous Domains (BC, NNL, QY), pp. 159–166.
ICML-2010-Carreira-Perpinan #algorithm #reduction
The Elastic Embedding Algorithm for Dimensionality Reduction (MÁCP), pp. 167–174.
ICML-2010-Cesa-BianchiGVZ #graph #predict #random
Random Spanning Trees and the Prediction of Weighted Graphs (NCB, CG, FV, GZ), pp. 175–182.
ICML-2010-Cesa-BianchiSS #learning #performance
Efficient Learning with Partially Observed Attributes (NCB, SSS, OS), pp. 183–190.
ICML-2010-ChakrabortyS #convergence #learning #multi #safety
Convergence, Targeted Optimality, and Safety in Multiagent Learning (DC, PS), pp. 191–198.
ICML-2010-ChangSGR #learning
Structured Output Learning with Indirect Supervision (MWC, VS, DG, DR), pp. 199–206.
ICML-2010-ChenW #modelling
Dynamical Products of Experts for Modeling Financial Time Series (YC, MW), pp. 207–214.
ICML-2010-ChengDH #ranking
Label Ranking Methods based on the Plackett-Luce Model (WC, KD, EH), pp. 215–222.
ICML-2010-ChengDH10a #classification #multi
Graded Multilabel Classification: The Ordinal Case (WC, KD, EH), pp. 223–230.
ICML-2010-CoenAF #clustering
Comparing Clusterings in Space (MHC, MHA, NF), pp. 231–238.
ICML-2010-CortesMR #algorithm #kernel #learning
Two-Stage Learning Kernel Algorithms (CC, MM, AR), pp. 239–246.
ICML-2010-CortesMR10a #bound #kernel #learning
Generalization Bounds for Learning Kernels (CC, MM, AR), pp. 247–254.
ICML-2010-CostaG #distance #kernel #performance
Fast Neighborhood Subgraph Pairwise Distance Kernel (FC, KDG), pp. 255–262.
ICML-2010-DasguptaN #clustering #mining
Mining Clustering Dimensions (SD, VN), pp. 263–270.
ICML-2010-DavisD #bottom-up #learning #markov #network
Bottom-Up Learning of Markov Network Structure (JD, PMD), pp. 271–278.
ICML-2010-DembczynskiCH #classification #multi #probability
Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains (KD, WC, EH), pp. 279–286.
ICML-2010-DeselaersF #learning #multi #random
A Conditional Random Field for Multiple-Instance Learning (TD, VF), pp. 287–294.
ICML-2010-DillonBL #analysis #generative #learning
Asymptotic Analysis of Generative Semi-Supervised Learning (JVD, KB, GL), pp. 295–302.
ICML-2010-DondelingerLH #flexibility #information management #network
Heterogeneous Continuous Dynamic Bayesian Networks with Flexible Structure and Inter-Time Segment Information Sharing (FD, SL, DH), pp. 303–310.
ICML-2010-DowneyS #adaptation #difference
Temporal Difference Bayesian Model Averaging: A Bayesian Perspective on Adapting λ (CD, SS), pp. 311–318.
ICML-2010-DruckM #generative #learning #modelling #using
High-Performance Semi-Supervised Learning using Discriminatively Constrained Generative Models (GD, AM), pp. 319–326.
ICML-2010-DuchiMJ #algorithm #consistency #on the #ranking
On the Consistency of Ranking Algorithms (JCD, LWM, MIJ), pp. 327–334.
ICML-2010-KrishnamurthyT
Inverse Optimal Control with Linearly-Solvable MDPs (KD, ET), pp. 335–342.
ICML-2010-El-HayCFK
Continuous-Time Belief Propagation (TEH, IC, NF, RK), pp. 343–350.
ICML-2010-FaivishevskyG #algorithm #clustering #parametricity
Nonparametric Information Theoretic Clustering Algorithm (LF, JG), pp. 351–358.
ICML-2010-GaudelS #feature model #game studies
Feature Selection as a One-Player Game (RG, MS), pp. 359–366.
ICML-2010-GavishNC #graph #learning #multi #theory and practice
Multiscale Wavelets on Trees, Graphs and High Dimensional Data: Theory and Applications to Semi Supervised Learning (MG, BN, RRC), pp. 367–374.
ICML-2010-GerrishB #approach
A Language-based Approach to Measuring Scholarly Impact (SG, DMB), pp. 375–382.
ICML-2010-GoldbergE #classification
Boosting Classifiers with Tightened L0-Relaxation Penalties (NG, JE), pp. 383–390.
ICML-2010-GomesK #data type #learning #parametricity
Budgeted Nonparametric Learning from Data Streams (RG, AK), pp. 391–398.
ICML-2010-GregorL #approximate #learning #performance
Learning Fast Approximations of Sparse Coding (KG, YL), pp. 399–406.
ICML-2010-GrubbB #composition #learning #network
Boosted Backpropagation Learning for Training Deep Modular Networks (AG, JAB), pp. 407–414.
ICML-2010-GuilloryB #interactive #set
Interactive Submodular Set Cover (AG, JAB), pp. 415–422.
ICML-2010-HariharanZVV #classification #multi #scalability
Large Scale Max-Margin Multi-Label Classification with Priors (BH, LZM, SVNV, MV), pp. 423–430.
ICML-2010-HarpaleY #adaptation #learning #multi
Active Learning for Multi-Task Adaptive Filtering (AH, YY), pp. 431–438.
ICML-2010-HoffmanBC #matrix #music #parametricity
Bayesian Nonparametric Matrix Factorization for Recorded Music (MDH, DMB, PRC), pp. 439–446.
ICML-2010-HonorioS #learning #modelling #multi #visual notation
Multi-Task Learning of Gaussian Graphical Models (JH, DS), pp. 447–454.
ICML-2010-HuangG #independence #learning #ranking
Learning Hierarchical Riffle Independent Groupings from Rankings (JH, CG), pp. 455–462.
ICML-2010-HueV #kernel #learning #on the
On learning with kernels for unordered pairs (MH, JPV), pp. 463–470.
ICML-2010-JaggiS #algorithm #problem
A Simple Algorithm for Nuclear Norm Regularized Problems (MJ, MS), pp. 471–478.
ICML-2010-JanzingHS
Telling cause from effect based on high-dimensional observations (DJ, POH, BS), pp. 479–486.
ICML-2010-JenattonMOB #learning #taxonomy
Proximal Methods for Sparse Hierarchical Dictionary Learning (RJ, JM, GO, FRB), pp. 487–494.
ICML-2010-JiXYY #3d #network #recognition
3D Convolutional Neural Networks for Human Action Recognition (SJ, WX, MY, KY), pp. 495–502.
ICML-2010-JojicGK #composition
Accelerated dual decomposition for MAP inference (VJ, SG, DK), pp. 503–510.
ICML-2010-KalyanakrishnanS #multi #performance #theory and practice
Efficient Selection of Multiple Bandit Arms: Theory and Practice (SK, PS), pp. 511–518.
ICML-2010-KimSD #algorithm #scalability
A scalable trust-region algorithm with application to mixed-norm regression (DK, SS, ISD), pp. 519–526.
ICML-2010-KimT
Local Minima Embedding (MK, FDlT), pp. 527–534.
ICML-2010-KimT10a #learning #multi #process
Gaussian Processes Multiple Instance Learning (MK, FDlT), pp. 535–542.
ICML-2010-KimX #multi
Tree-Guided Group Lasso for Multi-Task Regression with Structured Sparsity (SK, EPX), pp. 543–550.
ICML-2010-KokD #learning #logic #markov #network #using
Learning Markov Logic Networks Using Structural Motifs (SK, PMD), pp. 551–558.
ICML-2010-KolarPX #on the #parametricity
On Sparse Nonparametric Conditional Covariance Selection (MK, APP, EPX), pp. 559–566.
ICML-2010-KrauseC #representation #taxonomy
Submodular Dictionary Selection for Sparse Representation (AK, VC), pp. 567–574.
ICML-2010-KulisB #learning #online
Implicit Online Learning (BK, PLB), pp. 575–582.
ICML-2010-LangT #probability #reasoning #relational
Probabilistic Backward and Forward Reasoning in Stochastic Relational Worlds (TL, MT), pp. 583–590.
ICML-2010-LayB #classification #predict #using
Supervised Aggregation of Classifiers using Artificial Prediction Markets (NL, AB), pp. 591–598.
ICML-2010-LazaricG #learning #multi
Bayesian Multi-Task Reinforcement Learning (AL, MG), pp. 599–606.
ICML-2010-LazaricGM #algorithm #analysis #classification #policy
Analysis of a Classification-based Policy Iteration Algorithm (AL, MG, RM), pp. 607–614.
ICML-2010-LazaricGM10a #analysis
Finite-Sample Analysis of LSTD (AL, MG, RM), pp. 615–622.
ICML-2010-RouxF #performance
A fast natural Newton method (NLR, AWF), pp. 623–630.
ICML-2010-LiKL #approximate #scalability
Making Large-Scale Nyström Approximation Possible (ML, JTK, BLL), pp. 631–638.
ICML-2010-LiangJK #approach #learning #source code
Learning Programs: A Hierarchical Bayesian Approach (PL, MIJ, DK), pp. 639–646.
ICML-2010-LiangS #interactive #learning #multi #on the
On the Interaction between Norm and Dimensionality: Multiple Regimes in Learning (PL, NS), pp. 647–654.
ICML-2010-LinC #clustering
Power Iteration Clustering (FL, WWC), pp. 655–662.
ICML-2010-LiuLY #rank #representation #robust #segmentation
Robust Subspace Segmentation by Low-Rank Representation (GL, ZL, YY), pp. 663–670.
ICML-2010-LiuY #graph #robust
Robust Graph Mode Seeking by Graph Shift (HL, SY), pp. 671–678.
ICML-2010-LiuHC #graph #learning #scalability
Large Graph Construction for Scalable Semi-Supervised Learning (WL, JH, SFC), pp. 679–686.
ICML-2010-LiuNLL #analysis #graph #learning #relational
Learning Temporal Causal Graphs for Relational Time-Series Analysis (YL, ANM, ACL, YL), pp. 687–694.
ICML-2010-LizotteBM #analysis #learning #multi #performance #random
Efficient Reinforcement Learning with Multiple Reward Functions for Randomized Controlled Trial Analysis (DJL, MHB, SAM), pp. 695–702.
ICML-2010-LongS #approximate #simulation #strict
Restricted Boltzmann Machines are Hard to Approximately Evaluate or Simulate (PML, RAS), pp. 703–710.
ICML-2010-MackeyWJ #matrix
Mixed Membership Matrix Factorization (LWM, DJW, MIJ), pp. 711–718.
ICML-2010-MaeiSBS #approximate #learning #towards
Toward Off-Policy Learning Control with Function Approximation (HRM, CS, SB, RSS), pp. 719–726.
ICML-2010-Mahmud #learning
Constructing States for Reinforcement Learning (MMHM), pp. 727–734.
ICML-2010-Martens #learning #optimisation
Deep learning via Hessian-free optimization (JM), pp. 735–742.
ICML-2010-Martens10a #learning #linear
Learning the Linear Dynamical System with ASOS (JM), pp. 743–750.
ICML-2010-MasaeliFD #feature model #reduction
From Transformation-Based Dimensionality Reduction to Feature Selection (MM, GF, JGD), pp. 751–758.
ICML-2010-Masnadi-ShiraziV #elicitation #probability
Risk minimization, probability elicitation, and cost-sensitive SVMs (HMS, NV), pp. 759–766.
ICML-2010-McAuleyC #performance
Exploiting Data-Independence for Fast Belief-Propagation (JJM, TSC), pp. 767–774.
ICML-2010-McFeeL #learning #metric #rank
Metric Learning to Rank (BM, GRGL), pp. 775–782.
ICML-2010-MeshiSJG #approximate #learning
Learning Efficiently with Approximate Inference via Dual Losses (OM, DS, TSJ, AG), pp. 783–790.
ICML-2010-MinMYBZ
Deep Supervised t-Distributed Embedding (MRM, LvdM, ZY, AJB, ZZ), pp. 791–798.
ICML-2010-MorimuraSKHT #approximate #learning #parametricity
Nonparametric Return Distribution Approximation for Reinforcement Learning (TM, MS, HK, HH, TT), pp. 799–806.
ICML-2010-NairH #linear #strict
Rectified Linear Units Improve Restricted Boltzmann Machines (VN, GEH), pp. 807–814.
ICML-2010-NakajimaS #matrix
Implicit Regularization in Variational Bayesian Matrix Factorization (SN, MS), pp. 815–822.
ICML-2010-NegahbanW #estimation #matrix #rank #scalability
Estimation of (near) low-rank matrices with noise and high-dimensional scaling (SN, MJW), pp. 823–830.
ICML-2010-NiuDJ #clustering #multi
Multiple Non-Redundant Spectral Clustering Views (DN, JGD, MIJ), pp. 831–838.
ICML-2010-OntanonP #approach #induction #learning #multi
Multiagent Inductive Learning: an Argumentation-based Approach (SO, EP), pp. 839–846.
ICML-2010-PaisleyZWGC #process
A Stick-Breaking Construction of the Beta Process (JWP, AKZ, CWW, GSG, LC), pp. 847–854.
ICML-2010-PanagiotakopoulosT
The Margin Perceptron with Unlearning (CP, PT), pp. 855–862.
ICML-2010-PardoeS
Boosting for Regression Transfer (DP, PS), pp. 863–870.
ICML-2010-PetrikTPZ #approximate #feature model #linear #markov #process #source code #using
Feature Selection Using Regularization in Approximate Linear Programs for Markov Decision Processes (MP, GT, RP, SZ), pp. 871–878.
ICML-2010-LiPSG #learning #parametricity
Budgeted Distribution Learning of Belief Net Parameters (LL, BP, CS, RG), pp. 879–886.
ICML-2010-PoonZCW #clustering #modelling
Variable Selection in Model-Based Clustering: To Do or To Facilitate (LKMP, NLZ, TC, YW), pp. 887–894.
ICML-2010-DinculescuP #approximate #predict
Approximate Predictive Representations of Partially Observable Systems (MD, DP), pp. 895–902.
ICML-2010-ReisingerWSM #modelling #topic
Spherical Topic Models (JR, AW, BS, RJM), pp. 903–910.
ICML-2010-Ruping #classification #estimation
SVM Classifier Estimation from Group Probabilities (SR), pp. 911–918.
ICML-2010-Ryabko #clustering #process
Clustering processes (DR), pp. 919–926.
ICML-2010-SaatciTR #modelling #process
Gaussian Process Change Point Models (YS, RDT, CER), pp. 927–934.
ICML-2010-SakumaA #online #predict #privacy
Online Prediction with Privacy (JS, HA), pp. 935–942.
ICML-2010-Salakhutdinov #adaptation #learning #using
Learning Deep Boltzmann Machines using Adaptive MCMC (RS), pp. 943–950.
ICML-2010-SawadeLBS #estimation
Active Risk Estimation (CS, NL, SB, TS), pp. 951–958.
ICML-2010-Scherrer #difference #fixpoint #perspective
Should one compute the Temporal Difference fix point or minimize the Bellman Residual? The unified oblique projection view (BS), pp. 959–966.
ICML-2010-Seeger #scalability
Gaussian Covariance and Scalable Variational Inference (MWS), pp. 967–974.
ICML-2010-ShoebG #detection #machine learning
Application of Machine Learning To Epileptic Seizure Detection (AHS, JVG), pp. 975–982.
ICML-2010-SlivkinsRG #documentation #learning #ranking #scalability
Learning optimally diverse rankings over large document collections (AS, FR, SG), pp. 983–990.
ICML-2010-SongSGS #markov #modelling
Hilbert Space Embeddings of Hidden Markov Models (LS, BB, SMS, GJG, AJS), pp. 991–998.
ICML-2010-SonnenburgF #framework #linear #named
COFFIN: A Computational Framework for Linear SVMs (SS, VF), pp. 999–1006.
ICML-2010-SorgSL #bound
Internal Rewards Mitigate Agent Boundedness (JS, SPS, RLL), pp. 1007–1014.
ICML-2010-SrinivasKKS #design #optimisation #process
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design (NS, AK, SK, MWS), pp. 1015–1022.
ICML-2010-SyedR #dataset #identification
Unsupervised Risk Stratification in Clinical Datasets: Identifying Patients at Risk of Rare Outcomes (ZS, IR), pp. 1023–1030.
ICML-2010-SzitaS #bound #complexity #learning #modelling
Model-based reinforcement learning with nearly tight exploration complexity bounds (IS, CS), pp. 1031–1038.
ICML-2010-SzlamB
Total Variation, Cheeger Cuts (AS, XB), pp. 1039–1046.
ICML-2010-TanWT #dataset #feature model #learning
Learning Sparse SVM for Feature Selection on Very High Dimensional Datasets (MT, LW, IWT), pp. 1047–1054.
ICML-2010-TangE #network #recognition #robust #visual notation
Deep networks for robust visual recognition (YT, CE), pp. 1055–1062.
ICML-2010-ThiaoTA #approach #problem #programming
A DC Programming Approach for Sparse Eigenvalue Problem (MT, PDT, LTHA), pp. 1063–1070.
ICML-2010-ThieryS #policy #problem #trade-off
Least-Squares Policy Iteration: Bias-Variance Trade-off in Control Problems (CT, BS), pp. 1071–1078.
ICML-2010-TingHJ #analysis #convergence #graph
An Analysis of the Convergence of Graph Laplacians (DT, LH, MIJ), pp. 1079–1086.
ICML-2010-TomiokaSSK #algorithm #learning #matrix #performance #rank
A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices (RT, TS, MS, HK), pp. 1087–1094.
ICML-2010-TuL #classification #multi
One-sided Support Vector Regression for Multiclass Cost-sensitive Classification (HHT, HTL), pp. 1095–1102.
ICML-2010-VickreyLK
Non-Local Contrastive Objectives (DV, CCYL, DK), pp. 1103–1110.
ICML-2010-VogtPFR #clustering #distance #invariant #process
The Translation-invariant Wishart-Dirichlet Process for Clustering Distance Data (JEV, SP, TJF, VR), pp. 1111–1118.
ICML-2010-WalshSLD #learning
Generalizing Apprenticeship Learning across Hypothesis Classes (TJW, KS, MLL, CD), pp. 1119–1126.
ICML-2010-WangKC #learning
Sequential Projection Learning for Hashing with Compact Codes (JW, SK, SFC), pp. 1127–1134.
ICML-2010-WangZ #analysis
A New Analysis of Co-Training (WW, ZHZ), pp. 1135–1142.
ICML-2010-WangCV #multi
Multi-Class Pegasos on a Budget (ZW, KC, SV), pp. 1143–1150.
ICML-2010-WilliamsonWHB #modelling #process #topic
The IBP Compound Dirichlet Process and its Application to Focused Topic Modeling (SW, CW, KAH, DMB), pp. 1151–1158.
ICML-2010-WuYWD #feature model #online #streaming
Online Streaming Feature Selection (XW, KY, HW, WD), pp. 1159–1166.
ICML-2010-WunderLB #multi
Classes of Multiagent Q-learning Dynamics with epsilon-greedy Exploration (MW, MLL, MB), pp. 1167–1174.
ICML-2010-XuJYKL #kernel #learning #multi #performance
Simple and Efficient Multiple Kernel Learning by Group Lasso (ZX, RJ, HY, IK, MRL), pp. 1175–1182.
ICML-2010-YanQ #process
Sparse Gaussian Process Regression via L1 Penalization (FY, Y(Q), pp. 1183–1190.
ICML-2010-YangXKL #learning #online
Online Learning for Group Lasso (HY, ZX, IK, MRL), pp. 1191–1198.
ICML-2010-YangJJ #learning
Learning from Noisy Side Information by Generalized Maximum Entropy Model (TY, RJ, AKJ), pp. 1199–1206.
ICML-2010-Yu #convergence #difference
Convergence of Least Squares Temporal Difference Methods Under General Conditions (HY), pp. 1207–1214.
ICML-2010-YuZ #coordination #using
Improved Local Coordinate Coding using Local Tangents (KY, TZ), pp. 1215–1222.
ICML-2010-ZhangS #reduction
Projection Penalties: Dimension Reduction without Loss (YZ, JGS), pp. 1223–1230.
ICML-2010-ZhaoH #framework #learning #named #online
OTL: A Framework of Online Transfer Learning (PZ, SCHH), pp. 1231–1238.
ICML-2010-ZhuX #random #topic
Conditional Topic Random Fields (JZ, EPX), pp. 1239–1246.
ICML-2010-ZhuGJRHK #learning #modelling
Cognitive Models of Test-Item Effects in Human Category Learning (XZ, BRG, KSJ, TTR, JH, CK), pp. 1247–1254.
ICML-2010-ZiebartBD #interactive #modelling #principle
Modeling Interaction via the Principle of Maximum Causal Entropy (BDZ, JAB, AKD), pp. 1255–1262.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.