Travelled to:
1 × Finland
1 × Germany
1 × Greece
1 × Italy
2 × Spain
5 × USA
Collaborated with:
L.J.Guibas B.Chazelle E.Welzl M.Sharir ∅ G.Rote D.P.Dobkin C.Yap M.Grigni J.Pach R.Pollack R.Seidel J.Hershberger J.Snoeyink X.Li G.L.Miller A.Stathopoulos D.Talmor S.Teng A.Üngör N.Walkington
Talks about:
convex (3) plane (3) combinator (2) algorithm (2) topolog (2) polytop (2) arrang (2) applic (2) point (2) optim (2)
Person: Herbert Edelsbrunner
DBLP: Edelsbrunner:Herbert
Contributed to:
Wrote 13 papers:
- STOC-2000-EdelsbrunnerLMSTTUW
- Smoothing and cleaning up slivers (HE, XYL, GLM, AS, DT, SHT, AÜ, NW), pp. 273–277.
- STOC-1993-ChazelleEGGSW #bound #set
- Improved bounds on weak epsilon-nets for convex sets (BC, HE, MG, LJG, MS, EW), pp. 495–504.
- ICALP-1991-ChazelleEGGHSS #using
- Ray Shooting in Polygons Using Geodesic Triangulations (BC, HE, MG, LJG, JH, MS, JS), pp. 661–646.
- ICALP-1989-ChazelleEGS #algebra
- A Singly-Expenential Stratification Scheme for Real Semi-Algebraic Varieties and Its Applications (BC, HE, LJG, MS), pp. 179–193.
- STOC-1989-ChazelleEGS #algorithm #combinator
- Lines in Space-Combinatorics, Algorithms and Applications (BC, HE, LJG, MS), pp. 382–393.
- ICALP-1988-Edelsbrunner #geometry
- Geometric Structures in Computational Geometry (HE), pp. 201–213.
- ICALP-1988-EdelsbrunnerGPPSS #algorithm #combinator
- Arrangements of Curves in the Plane — Topology, Combinatorics, and Algorithms (HE, LJG, JP, RP, RS, MS), pp. 214–229.
- ICALP-1987-EdelsbrunnerRW #testing
- Testing the Necklace Condition for Shortest Tours and Optimal Factors in the Plane (HE, GR, EW), pp. 364–375.
- STOC-1987-ChazelleEG #complexity
- The Complexity of Cutting Convex Polytopes (BC, HE, LJG), pp. 66–76.
- STOC-1986-DobkinEY
- Probing Convex Polytopes (DPD, HE, CKY), pp. 424–432.
- STOC-1986-EdelsbrunnerG
- Topologically Sweeping an Arrangement (HE, LJG), pp. 389–403.
- ICALP-1985-ChazelleE #problem #retrieval
- Optimal Solutions for a Class of Point Retrieval Problems (BC, HE), pp. 80–89.
- ICALP-1983-EdelsbrunnerW #on the #set
- On the Number of Equal-Sized Semispaces of a Set of Points in the Plane (HE, EW), pp. 182–187.