18 papers:
- CAV-2015-GleissenthallKR #verification
- Symbolic Polytopes for Quantitative Interpolation and Verification (KvG, BK, AR), pp. 178–194.
- STOC-2014-Rothvoss #complexity #exponential
- The matching polytope has exponential extension complexity (TR), pp. 263–272.
- FSE-2014-DingesA #heuristic
- Solving complex path conditions through heuristic search on induced polytopes (PD, GAA), pp. 425–436.
- ICALP-v1-2013-AvisT #combinator #complexity #on the
- On the Extension Complexity of Combinatorial Polytopes (DA, HRT), pp. 57–68.
- ICALP-v1-2013-BrunschR #algorithm
- Finding Short Paths on Polytopes by the Shadow Vertex Algorithm (TB, HR), pp. 279–290.
- STOC-2012-GoelML
- Polyhedral clinching auctions and the adwords polytope (GG, VSM, RPL), pp. 107–122.
- KDIR-2012-LitvakV #summary
- Polytope Model for Extractive Summarization (ML, NV), pp. 281–286.
- SAC-2012-ShahidPO #bound
- Minimum bounding boxes for regular cross-polytopes (SS, SP, CBO), pp. 879–884.
- STOC-2011-AryaFM #approximate #query
- Approximate polytope membership queries (SA, GDdF, DMM), pp. 579–586.
- ICML-2011-KamisettyXL #approximate #correlation #using
- Approximating Correlated Equilibria using Relaxations on the Marginal Polytope (HK, EPX, CJL), pp. 1153–1160.
- STOC-2010-HarshaKM
- An invariance principle for polytopes (PH, AK, RM), pp. 543–552.
- SAC-2010-FunfzigMF #polynomial
- Polytope-based computation of polynomial ranges (CF, DM, SF), pp. 1247–1252.
- STOC-2009-KannanN #linear #programming #random
- Random walks on polytopes and an affine interior point method for linear programming (RK, HN), pp. 561–570.
- STOC-2009-MathieuS
- Sherali-adams relaxations of the matching polytope (CM, AS), pp. 293–302.
- CGO-2009-CordesFM #abstract interpretation #analysis #modelling #performance #precise #slicing
- A Fast and Precise Static Loop Analysis Based on Abstract Interpretation, Program Slicing and Polytope Models (PL, DC, HF, PM), pp. 136–146.
- CC-2005-VerdoolaegeBBC #case study #experience #integer #parametricity
- Experiences with Enumeration of Integer Projections of Parametric Polytopes (SV, KB, MB, FC), pp. 91–105.
- STOC-1987-ChazelleEG #complexity
- The Complexity of Cutting Convex Polytopes (BC, HE, LJG), pp. 66–76.
- STOC-1986-DobkinEY
- Probing Convex Polytopes (DPD, HE, CKY), pp. 424–432.