Travelled to:
1 × Canada
1 × Italy
11 × USA
Collaborated with:
R.E.Schapire S.V.N.Vishwanathan D.Kuzmin ∅ J.Forster Y.Singer M.Herbster W.Maass J.Kivinen L.Pitt Y.Freund D.P.Helmbold D.Haussler J.Liao G.Rätsch N.Littlestone P.M.Long A.Blumer A.Ehrenfeucht N.Cesa-Bianchi
Talks about:
learn (4) updat (3) use (3) algorithm (2) tempor (2) linear (2) expert (2) differ (2) boost (2) that (2)
Person: Manfred K. Warmuth
DBLP: Warmuth:Manfred_K=
Contributed to:
Wrote 15 papers:
- ICML-2009-WarmuthV #optimisation #overview #perspective #summary #tutorial
- Tutorial summary: Survey of boosting from an optimization perspective (MKW, SVNV), p. 15.
- ICML-2007-KuzminW #kernel #matrix #online
- Online kernel PCA with entropic matrix updates (DK, MKW), pp. 465–472.
- ICML-2007-Warmuth
- Winnowing subspaces (MKW), pp. 999–1006.
- ICML-2006-WarmuthLR #algorithm
- Totally corrective boosting algorithms that maximize the margin (MKW, JL, GR), pp. 1001–1008.
- ICML-2000-ForsterW #bound #learning
- Relative Loss Bounds for Temporal-Difference Learning (JF, MKW), pp. 295–302.
- STOC-1997-FreundSSW #predict #using
- Using and Combining Predictors That Specialize (YF, RES, YS, MKW), pp. 334–343.
- ICML-1996-HelmboldSSW #multi #online #using
- On-Line Portfolio Selection Using Multiplicative Updates (DPH, RES, YS, MKW), pp. 243–251.
- ICML-1995-HerbsterW
- Tracking the Best Expert (MH, MKW), pp. 286–294.
- ICML-1995-MaassW #learning #performance
- Efficient Learning with Virtual Threshold Gates (WM, MKW), pp. 378–386.
- STOC-1995-KivinenW #linear #predict
- Additive versus exponentiated gradient updates for linear prediction (JK, MKW), pp. 209–218.
- ICML-1994-SchapireW #algorithm #analysis #learning #on the #worst-case
- On the Worst-Case Analysis of Temporal-Difference Learning Algorithms (RES, MKW), pp. 266–274.
- STOC-1993-Cesa-BianchiFHHSW #how
- How to use expert advice (NCB, YF, DPH, DH, RES, MKW), pp. 382–391.
- STOC-1991-LittlestoneLW #learning #linear #online
- On-Line Learning of Linear Functions (NL, PML, MKW), pp. 465–475.
- STOC-1989-PittW #approximate #automaton #consistency #polynomial #problem
- The Minimum Consistent DFA Problem Cannot Be Approximated within any Polynomial (LP, MKW), pp. 421–432.
- STOC-1986-BlumerEHW #concept #geometry
- Classifying Learnable Geometric Concepts with the Vapnik-Chervonenkis Dimension (AB, AE, DH, MKW), pp. 273–282.