Proceedings of the 23rd International Conference on Machine Learning
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

William W. Cohen, Andrew Moore
Proceedings of the 23rd International Conference on Machine Learning
ICML, 2006.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{ICML-2006,
	address       = "Pittsburgh, Pennsylvania, USA",
	editor        = "William W. Cohen and Andrew Moore",
	isbn          = "1-59593-383-2",
	publisher     = "{ACM}",
	series        = "{ACM International Conference Proceeding Series}",
	title         = "{Proceedings of the 23rd International Conference on Machine Learning}",
	volume        = 148,
	year          = 2006,
}

Contents (140 items)

ICML-2006-AbbeelQN #learning #modelling #using
Using inaccurate models in reinforcement learning (PA, MQ, AYN), pp. 1–8.
ICML-2006-AgarwalHKS #algorithm
Algorithms for portfolio management based on the Newton method (AA, EH, SK, RES), pp. 9–16.
ICML-2006-AgarwalBB #graph #higher-order #learning
Higher order learning with graphs (SA, KB, SB), pp. 17–24.
ICML-2006-Agarwal #graph #ranking
Ranking on graph data (SA0), pp. 25–32.
ICML-2006-ArchambeauDV #probability #robust
Robust probabilistic projections (CA, ND, MV), pp. 33–40.
ICML-2006-ArgyriouHMP #algorithm #kernel
A DC-programming algorithm for kernel selection (AA, RH, CAM, MP), pp. 41–48.
ICML-2006-AsgharbeygiSL #difference #learning #relational
Relational temporal difference learning (NA, DJS, PL), pp. 49–56.
ICML-2006-AzranG #approach #clustering #data-driven
A new approach to data driven clustering (AA, ZG), pp. 57–64.
ICML-2006-BalcanBL #learning
Agnostic active learning (MFB, AB, JL), pp. 65–72.
ICML-2006-BalcanB #formal method #learning #on the #similarity
On a theory of learning with similarity functions (MFB, AB), pp. 73–80.
ICML-2006-Banerjee #bound #on the
On Bayesian bounds (AB), pp. 81–88.
ICML-2006-BanerjeeGdN #modelling #optimisation #visual notation
Convex optimization techniques for fitting sparse Gaussian graphical models (OB, LEG, Ad, GN), pp. 89–96.
ICML-2006-BeygelzimerKL #nearest neighbour
Cover trees for nearest neighbor (AB, SK, JL), pp. 97–104.
ICML-2006-BezakovaKS #graph #using
Graph model selection using maximum likelihood (IB, AK, RS), pp. 105–112.
ICML-2006-BleiL #modelling #topic
Dynamic topic models (DMB, JDL), pp. 113–120.
ICML-2006-BonillaWACTO #predict
Predictive search distributions (EVB, CKIW, FVA, JC, JT, MFPO), pp. 121–128.
ICML-2006-BowlingMJNW #learning #policy #predict #using
Learning predictive state representations using non-blind policies (MHB, PM, MJ, JN, DFW), pp. 129–136.
ICML-2006-BrefeldGSW #performance
Efficient co-regularised least squares regression (UB, TG, TS, SW), pp. 137–144.
ICML-2006-BrefeldS #learning
Semi-supervised learning for structured output variables (UB, TS), pp. 145–152.
ICML-2006-Carreira-Perpinan #clustering #parametricity #performance
Fast nonparametric clustering with Gaussian blurring mean-shift (MÁCP), pp. 153–160.
ICML-2006-CaruanaN #algorithm #comparison #empirical #learning
An empirical comparison of supervised learning algorithms (RC, ANM), pp. 161–168.
ICML-2006-CaytonD #robust
Robust Euclidean embedding (LC, SD), pp. 169–176.
ICML-2006-Cesa-BianchiGZ #classification
Hierarchical classification: combining Bayes with SVM (NCB, CG, LZ), pp. 177–184.
ICML-2006-ChapelleCZ #continuation
A continuation method for semi-supervised SVMs (OC, MC, AZ), pp. 185–192.
ICML-2006-CheungK #framework #learning #multi
A regularization framework for multiple-instance learning (PMC, JTK), pp. 193–200.
ICML-2006-CollobertSWB #scalability
Trading convexity for scalability (RC, FHS, JW, LB), pp. 201–208.
ICML-2006-ConitzerG #algorithm #learning #online #problem
Learning algorithms for online principal-agent problems (and selling goods online) (VC, NG), pp. 209–216.
ICML-2006-SilvaBBE #detection #using
Dealing with non-stationary environments using context detection (BCdS, EWB, ALCB, PME), pp. 217–224.
ICML-2006-DaiYTK #adaptation #classification #nondeterminism
Locally adaptive classification piloted by uncertainty (JD, SY, XT, JTK), pp. 225–232.
ICML-2006-DavisG
The relationship between Precision-Recall and ROC curves (JD, MG), pp. 233–240.
ICML-2006-TorreK #analysis #clustering
Discriminative cluster analysis (FDlT, TK), pp. 241–248.
ICML-2006-DeCoste #collaboration #matrix #predict #using
Collaborative prediction using ensembles of Maximum Margin Matrix Factorizations (DD), pp. 249–256.
ICML-2006-DegrisSW #learning #markov #problem #process
Learning the structure of Factored Markov Decision Processes in reinforcement learning problems (TD, OS, PHW), pp. 257–264.
ICML-2006-DenisMR #classification #learning #naive bayes #performance
Efficient learning of Naive Bayes classifiers under class-conditional classification noise (FD, CNM, LR), pp. 265–272.
ICML-2006-desJardinsEW #learning #set
Learning user preferences for sets of objects (Md, EE, KW), pp. 273–280.
ICML-2006-DingZHZ #analysis #component #invariant #named #robust
R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization (CHQD, DZ, XH, HZ), pp. 281–288.
ICML-2006-Elkan #approximate #clustering #documentation #multi
Clustering documents with an exponential-family approximation of the Dirichlet compound multinomial distribution (CE), pp. 289–296.
ICML-2006-EngelhardtJB #predict #visual notation
A graphical model for predicting protein molecular function (BEE, MIJ, SEB), pp. 297–304.
ICML-2006-EpshteynD #learning
Qualitative reinforcement learning (AE, GD), pp. 305–312.
ICML-2006-FinkSSU #learning #multi #online
Online multiclass learning by interclass hypothesis sharing (MF, SSS, YS, SU), pp. 313–320.
ICML-2006-Garcke
Regression with the optimised combination technique (JG), pp. 321–328.
ICML-2006-GeJ #approximate #consistency #multi
A note on mixtures of experts for multiclass responses: approximation rate and Consistent Bayesian Inference (YG, WJ), pp. 329–335.
ICML-2006-GehlerHW #adaptation #information retrieval #recognition
The rate adapting poisson model for information retrieval and object recognition (PVG, AH, MW), pp. 337–344.
ICML-2006-GeurtsWd #kernel
Kernelizing the output of tree-based methods (PG, LW, FdB), pp. 345–352.
ICML-2006-GlobersonR #learning #robust
Nightmare at test time: robust learning by feature deletion (AG, STR), pp. 353–360.
ICML-2006-GorurJR #infinity
A choice model with infinitely many latent features (DG, FJ, CER), pp. 361–368.
ICML-2006-GravesFGS #classification #network #sequence
Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks (AG, SF, FJG, JS), pp. 369–376.
ICML-2006-GreeneC #clustering #documentation #kernel #problem
Practical solutions to the problem of diagonal dominance in kernel document clustering (DG, PC), pp. 377–384.
ICML-2006-Haffner #kernel #learning #performance
Fast transpose methods for kernel learning on sparse data (PH), pp. 385–392.
ICML-2006-Hanneke #analysis #graph #learning
An analysis of graph cut size for transductive learning (SH), pp. 393–399.
ICML-2006-HertzBW #classification #kernel #learning
Learning a kernel function for classification with small training samples (TH, ABH, DW), pp. 401–408.
ICML-2006-HolmesJ
Looping suffix tree-based inference of partially observable hidden state (MPH, CLIJ), pp. 409–416.
ICML-2006-HoiJZL #classification #image #learning
Batch mode active learning and its application to medical image classification (SCHH, RJ, JZ, MRL), pp. 417–424.
ICML-2006-HuangLW #ranking
Ranking individuals by group comparisons (TKH, CJL, RCW), pp. 425–432.
ICML-2006-HutchinsonMR #modelling #process
Hidden process models (RAH, TMM, IR), pp. 433–440.
ICML-2006-Juba
Estimating relatedness via data compression (BJ), pp. 441–448.
ICML-2006-KellerMP #approximate #automation #learning #programming
Automatic basis function construction for approximate dynamic programming and reinforcement learning (PWK, SM, DP), pp. 449–456.
ICML-2006-KienzleC #personalisation #recognition
Personalized handwriting recognition via biased regularization (WK, KC), pp. 457–464.
ICML-2006-KimMB #analysis #kernel
Optimal kernel selection in Kernel Fisher discriminant analysis (SJK, AM, SPB), pp. 465–472.
ICML-2006-KimMSBL #classification #linear
Pareto optimal linear classification (SJK, AM, SS, SPB, JL), pp. 473–480.
ICML-2006-KlaasBFDML #performance
Fast particle smoothing: if I had a million particles (MK, MB, NdF, AD, SM, DL), pp. 481–488.
ICML-2006-KonidarisB #information management #learning
Autonomous shaping: knowledge transfer in reinforcement learning (GK, AGB), pp. 489–496.
ICML-2006-KrauseLG #topic
Data association for topic intensity tracking (AK, JL, CG), pp. 497–504.
ICML-2006-KulisSD #kernel #learning #matrix #rank
Learning low-rank kernel matrices (BK, MAS, ISD), pp. 505–512.
ICML-2006-LawrenceC #constraints #distance
Local distance preservation in the GP-LVM through back constraints (NDL, JQC), pp. 513–520.
ICML-2006-LeSG #knowledge-based
Simpler knowledge-based support vector machines (QVL, AJS, TG), pp. 521–528.
ICML-2006-LeeGW #classification #using
Using query-specific variance estimates to combine Bayesian classifiers (CHL, RG, SW), pp. 529–536.
ICML-2006-LehmannS #kernel #probability
A probabilistic model for text kernels (ADL, JST), pp. 537–544.
ICML-2006-LeordeanuH #approximate #energy #performance
Efficient MAP approximation for dense energy functions (ML, MH), pp. 545–552.
ICML-2006-LewisJN #kernel
Nonstationary kernel combination (DPL, TJ, WSN), pp. 553–560.
ICML-2006-LiLC #markov #process
Region-based value iteration for partially observable Markov decision processes (HL, XL, LC), pp. 561–568.
ICML-2006-Li #clustering #multi
Multiclass boosting with repartitioning (LL), pp. 569–576.
ICML-2006-LiM #correlation #modelling #topic
Pachinko allocation: DAG-structured mixture models of topic correlations (WL, AM), pp. 577–584.
ICML-2006-LongZWY #clustering #multi #relational
Spectral clustering for multi-type relational data (BL, Z(Z, XW, PSY), pp. 585–592.
ICML-2006-LuV #clustering
Combined central and subspace clustering for computer vision applications (LL, RV), pp. 593–600.
ICML-2006-MaggioniM #analysis #evaluation #markov #multi #performance #policy #process #using
Fast direct policy evaluation using multiscale analysis of Markov diffusion processes (MM, SM), pp. 601–608.
ICML-2006-Martinez-MunozS #order
Pruning in ordered bagging ensembles (GMM, AS), pp. 609–616.
ICML-2006-McAuleyCSF #higher-order #image #learning
Learning high-order MRF priors of color images (JJM, TSC, AJS, MOF), pp. 617–624.
ICML-2006-Meila
The uniqueness of a good optimum for K-means (MM), pp. 625–632.
ICML-2006-Memisevic #kernel
Kernel information embeddings (RM), pp. 633–640.
ICML-2006-MoghaddamWA #bound
Generalized spectral bounds for sparse LDA (BM, YW, SA), pp. 641–648.
ICML-2006-NaorR #learning
Learning to impersonate (MN, GNR), pp. 649–656.
ICML-2006-NarasimhanVS #constraints #latency #markov #modelling #online
Online decoding of Markov models under latency constraints (MN, PAV, MS), pp. 657–664.
ICML-2006-NejatiLK #learning #network
Learning hierarchical task networks by observation (NN, PL, TK), pp. 665–672.
ICML-2006-NevmyvakaFK #execution #learning
Reinforcement learning for optimized trade execution (YN, YF, MK), pp. 673–680.
ICML-2006-PandaCW #bound #concept #detection
Concept boundary detection for speeding up SVMs (NP, EYC, GW), pp. 681–688.
ICML-2006-PereiraG #composition
The support vector decomposition machine (FP, GJG), pp. 689–696.
ICML-2006-PoupartVHR #learning
An analytic solution to discrete Bayesian reinforcement learning (PP, NAV, JH, KR), pp. 697–704.
ICML-2006-RahmaniG #learning #multi #named
MISSL: multiple-instance semi-supervised learning (RR, SAG), pp. 705–712.
ICML-2006-RainaNK #learning #using
Constructing informative priors using transfer learning (RR, AYN, DK), pp. 713–720.
ICML-2006-RalaivolaDM
CN = CPCN (LR, FD, CNM), pp. 721–728.
ICML-2006-RatliffBZ
Maximum margin planning (NDR, JAB, MZ), pp. 729–736.
ICML-2006-RavikumarL #estimation #markov #metric #polynomial #programming #random
Quadratic programming relaxations for metric labeling and Markov random field MAP estimation (PDR, JDL), pp. 737–744.
ICML-2006-RendersGGPC #categorisation #multi
Categorization in multiple category systems (JMR, ÉG, CG, FP, GC), pp. 745–752.
ICML-2006-ReyzinS #classification #complexity #how
How boosting the margin can also boost classifier complexity (LR, RES), pp. 753–760.
ICML-2006-RossOZ
Combining discriminative features to infer complex trajectories (DAR, SO, RSZ), pp. 761–768.
ICML-2006-RoureM
Sequential update of ADtrees (JR, AWM), pp. 769–776.
ICML-2006-RudaryS #modelling #predict #probability
Predictive linear-Gaussian models of controlled stochastic dynamical systems (MRR, SPS), pp. 777–784.
ICML-2006-RuckertK #approach #learning #statistics
A statistical approach to rule learning (UR, SK), pp. 785–792.
ICML-2006-Sarawagi #modelling #performance #segmentation #sequence
Efficient inference on sequence segmentation models (SS), pp. 793–800.
ICML-2006-SenG #learning #markov #network
Cost-sensitive learning with conditional Markov networks (PS, LG), pp. 801–808.
ICML-2006-ShengL #algorithm #testing
Feature value acquisition in testing: a sequential batch test algorithm (VSS, CXL), pp. 809–816.
ICML-2006-ShivaswamyJ #invariant #permutation
Permutation invariant SVMs (PKS, TJ), pp. 817–824.
ICML-2006-SilvaS #learning #metric #modelling
Bayesian learning of measurement and structural models (RBdAeS, RS), pp. 825–832.
ICML-2006-SimsekB #performance
An intrinsic reward mechanism for efficient exploration (ÖS, AGB), pp. 833–840.
ICML-2006-SindhwaniKC #kernel
Deterministic annealing for semi-supervised kernel machines (VS, SSK, OC), pp. 841–848.
ICML-2006-SinghiL #bias #classification #learning #set
Feature subset selection bias for classification learning (SKS, HL), pp. 849–856.
ICML-2006-SongE #human-computer #interface #learning
Classifying EEG for brain-computer interfaces: learning optimal filters for dynamical system features (LS, JE), pp. 857–864.
ICML-2006-SrebroSR #clustering
An investigation of computational and informational limits in Gaussian mixture clustering (NS, GS, STR), pp. 865–872.
ICML-2006-SternHG #game studies #predict #ranking
Bayesian pattern ranking for move prediction in the game of Go (DHS, RH, TG), pp. 873–880.
ICML-2006-StrehlLWLL #learning
PAC model-free reinforcement learning (ALS, LL, EW, JL, MLL), pp. 881–888.
ICML-2006-StrehlMLH #learning #problem
Experience-efficient learning in associative bandit problems (ALS, CM, MLL, HH), pp. 889–896.
ICML-2006-SuZ #classification #network
Full Bayesian network classifiers (JS, HZ), pp. 897–904.
ICML-2006-Sugiyama #analysis #reduction
Local Fisher discriminant analysis for supervised dimensionality reduction (MS), pp. 905–912.
ICML-2006-SunL
Iterative RELIEF for feature weighting (YS, JL), pp. 913–920.
ICML-2006-TangM #multi
Multiclass reduced-set support vector machines (BT, DM), pp. 921–928.
ICML-2006-TeoV #array #kernel #performance #string #using
Fast and space efficient string kernels using suffix arrays (CHT, SVNV), pp. 929–936.
ICML-2006-TingDS
Bayesian regression with input noise for high dimensional data (JAT, AD, SS), pp. 937–944.
ICML-2006-ToussaintS #markov #probability #process
Probabilistic inference for solving discrete and continuous state Markov Decision Processes (MT, AJS), pp. 945–952.
ICML-2006-TsudaK #clustering #graph #mining
Clustering graphs by weighted substructure mining (KT, TK), pp. 953–960.
ICML-2006-VeeramachaneniOA #detection
Active sampling for detecting irrelevant features (SV, EO, PA), pp. 961–968.
ICML-2006-VishwanathanSSM #probability #random
Accelerated training of conditional random fields with stochastic gradient methods (SVNV, NNS, MWS, KPM), pp. 969–976.
ICML-2006-Wallach #modelling #topic
Topic modeling: beyond bag-of-words (HMW), pp. 977–984.
ICML-2006-WangZ #linear
Label propagation through linear neighborhoods (FW, CZ), pp. 985–992.
ICML-2006-WangYL #2d
Two-dimensional solution path for support vector regression (GW, DYY, FHL), pp. 993–1000.
ICML-2006-WarmuthLR #algorithm
Totally corrective boosting algorithms that maximize the margin (MKW, JL, GR), pp. 1001–1008.
ICML-2006-WestonCSBV
Inference with the Universum (JW, RC, FHS, LB, VV), pp. 1009–1016.
ICML-2006-WingateS #kernel #linear #modelling #predict #probability
Kernel Predictive Linear Gaussian models for nonlinear stochastic dynamical systems (DW, SPS), pp. 1017–1024.
ICML-2006-WolfeS #predict
Predictive state representations with options (BW, SPS), pp. 1025–1032.
ICML-2006-XiKSWR #classification #performance #reduction #using
Fast time series classification using numerosity reduction (XX, EJK, CRS, LW, CAR), pp. 1033–1040.
ICML-2006-XiaoSB #reduction
A duality view of spectral methods for dimensionality reduction (LX, JS, SPB), pp. 1041–1048.
ICML-2006-XingSJT #multi #process #type inference
Bayesian multi-population haplotype inference via a hierarchical dirichlet process mixture (EPX, KAS, MIJ, YWT), pp. 1049–1056.
ICML-2006-XuWSS #learning #predict
Discriminative unsupervised learning of structured predictors (LX, DFW, FS, DS), pp. 1057–1064.
ICML-2006-YangFZB #reduction
Semi-supervised nonlinear dimensionality reduction (XY, HF, HZ, JLB), pp. 1065–1072.
ICML-2006-YeX #analysis #linear #null #orthogonal
Null space versus orthogonal linear discriminant analysis (JY, TX), pp. 1073–1080.
ICML-2006-YuBT #design #learning
Active learning via transductive experimental design (KY, JB, VT), pp. 1081–1088.
ICML-2006-YuYTK #collaboration
Collaborative ordinal regression (SY, KY, VT, HPK), pp. 1089–1096.
ICML-2006-ZhangK #kernel #matrix #performance
Block-quantized kernel matrix for fast spectral embedding (KZ, JTK), pp. 1097–1104.
ICML-2006-ZhengJLNA #debugging #identification #multi #statistics
Statistical debugging: simultaneous identification of multiple bugs (AXZ, MIJ, BL, MN, AA), pp. 1105–1112.
ICML-2006-ZhengW #lazy evaluation #performance
Efficient lazy elimination for averaged one-dependence estimators (FZ, GIW), pp. 1113–1120.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.