`Travelled to:`

1 × Austria

1 × Canada

1 × France

1 × Germany

2 × Australia

2 × Italy

3 × USA

`Collaborated with:`

∅ J.Hsiang N.Dershowitz M.Echenim W.McCune G.Sanna C.Lynch L.M.d.Moura S.Graham-Lengrand N.Shankar S.Ghilardi E.Nicolini S.Ranise D.Zucchelli

`Talks about:`

theorem (6) prove (4) peer (3) distribut (2) satisfi (2) program (2) search (2) rewrit (2) prover (2) decis (2)

## Person: Maria Paola Bonacina

### DBLP: Bonacina:Maria_Paola

### Facilitated 1 volumes:

### Contributed to:

### Wrote 12 papers:

- PPDP-2010-Bonacina #on the #proving #theorem proving
- On theorem proving for program checking: historical perspective and recent developments (MPB), pp. 1–12.
- CADE-2009-BonacinaLM #on the #proving #satisfiability #theorem proving
- On Deciding Satisfiability by DPLL(G+T) and Unsound Theorem Proving (MPB, CL, LMdM), pp. 35–50.
- IJCAR-2008-BonacinaD #canonical
- Canonical Inference for Implicational Systems (MPB, ND), pp. 380–395.
- CADE-2007-BonacinaE #composition
- T-Decision by Decomposition (MPB, ME), pp. 199–214.
- IJCAR-2006-BonacinaGNRZ #decidability
- Decidability and Undecidability Results for Nelson-Oppen and Rewrite-Based Decision Procedures (MPB, SG, EN, SR, DZ), pp. 513–527.
- IJCAR-2001-Bonacina #distributed #multi
- Combination of Distributed Search and Multi-search in Peers-mcd.d (MPB), pp. 448–452.
- CADE-1997-Bonacina #proving #theorem proving
- The Clause-Diffusion Theorem Prover Peers-mcd (MPB), pp. 53–56.
- CADE-1994-BonacinaM #distributed #proving #theorem proving
- Distributed Theorem Proving by Peers (MPB, WM), pp. 841–845.
- RTA-1991-BonacinaH #on the #proving #theorem proving
- On Fairness of Completion-Based Theorem Proving Strategies (MPB, JH), pp. 348–360.
- NACLP-1990-BonacinaH #semantics #source code
- Operational and Denotational Semantics of Rewrite Programs (MPB, JH), pp. 449–464.
- RTA-1989-BonacinaS #equation #named #proving #theorem proving
- KBlab: An Equational Theorem Prover for the Macintosh (MPB, GS), pp. 548–550.
- CADE-2017-BonacinaGS #modulo theories #satisfiability
- Satisfiability Modulo Theories and Assignments (MPB, SGL, NS), pp. 42–59.