Travelled to:
1 × Australia
1 × Austria
1 × France
1 × Ireland
1 × Japan
1 × United Kingdom
2 × Germany
Collaborated with:
N.Peltier T.B.d.l.Tour S.Tourret M.P.Bonacina P.Narendran Y.Sellami
Talks about:
generat (4) equat (4) permut (3) implic (3) present (2) theori (2) modulo (2) prime (2) logic (2) unif (2)
Person: Mnacho Echenim
DBLP: Echenim:Mnacho
Contributed to:
Wrote 10 papers:
- CADE-2015-EchenimPT #equation #generative #logic #quantifier
- Quantifier-Free Equational Logic and Prime Implicate Generation (ME, NP, ST), pp. 311–325.
- IJCAR-2014-EchenimPT #equation #logic
- A Rewriting Strategy to Generate Prime Implicates in Equational Logic (ME, NP, ST), pp. 137–151.
- IJCAR-2012-EchenimP #calculus #generative
- A Calculus for Generating Ground Explanations (ME, NP), pp. 194–209.
- IJCAR-2008-TourEN #equation #unification
- Unification and Matching Modulo Leaf-Permutative Equational Presentations (TBdlT, ME, PN), pp. 332–347.
- CADE-2007-BonacinaE #composition
- T-Decision by Decomposition (MPB, ME), pp. 199–214.
- RTA-2007-TourE
- Determining Unify-Stable Presentations (TBdlT, ME), pp. 63–77.
- RTA-2005-TourE #unification
- Unification in a Class of Permutative Theories (TBdlT, ME), pp. 105–119.
- IJCAR-2004-TourE #equation
- Overlapping Leaf Permutative Equations (TBdlT, ME), pp. 430–444.
- CADE-2017-EchenimP #formal method
- The Binomial Pricing Model in Finance: A Formalization in Isabelle (ME, NP), pp. 546–562.
- IJCAR-2018-EchenimPS #framework #generative #modulo theories
- A Generic Framework for Implicate Generation Modulo Theories (ME, NP, YS), pp. 279–294.