Travelled to:
1 × Australia
1 × Austria
1 × China
1 × France
1 × United Kingdom
4 × USA
Collaborated with:
H.J.Jung O.Alonso A.Kumar A.Tian ∅ H.Ryu N.Woodward S.Shukla A.Tewari J.Baldridge S.Momtazi D.Klakow J.Allan W.B.Croft Y.Zhang J.Zhang J.Gwizdka R.K.Saha S.Khurshid D.E.Perry
Talks about:
retriev (4) crowdsourc (3) inform (3) model (3) learn (3) accuraci (2) social (2) search (2) improv (2) relev (2)
Person: Matthew Lease
DBLP: Lease:Matthew
Contributed to:
Wrote 14 papers:
- ECIR-2015-JungL #approach #predict
- A Discriminative Approach to Predicting Assessor Accuracy (HJJ, ML), pp. 159–171.
- SIGIR-2014-ZhangZLG14a #crowdsourcing #modelling #multi
- Multidimensional relevance modeling via psychometrics and crowdsourcing (YZ, JZ, ML, JG), pp. 435–444.
- ASE-2013-SahaLKP #debugging #information retrieval #locality #using
- Improving bug localization using structured information retrieval (RKS, ML, SK, DEP), pp. 345–355.
- HT-2012-RyuLW #social #social media
- Finding and exploring memes in social media (HR, ML, NW), pp. 295–304.
- SIGIR-2012-JungL #matrix #probability
- Inferring missing relevance judgments from crowd workers via probabilistic matrix factorization (HJJ, ML), pp. 1095–1096.
- SIGIR-2012-LeaseA #crowdsourcing #evaluation
- Crowdsourcing for search evaluation and social-algorithmic search (ML, OA), p. 1180.
- SIGIR-2012-ShuklaLT #using
- Parallelizing ListNet training using spark (SS, ML, AT), pp. 1127–1128.
- CIKM-2011-KumarLB #modelling
- Supervised language modeling for temporal resolution of texts (AK, ML, JB), pp. 2069–2072.
- SIGIR-2011-AlonsoL #crowdsourcing #information retrieval
- Crowdsourcing for information retrieval: principles, methods, and applications (OA, ML), pp. 1299–1300.
- SIGIR-2011-KumarL #learning #rank
- Learning to rank from a noisy crowd (AK, ML), pp. 1221–1222.
- SIGIR-2011-TianL #information retrieval #interactive #learning
- Active learning to maximize accuracy vs. effort in interactive information retrieval (AT, ML), pp. 145–154.
- ECDL-2010-MomtaziLK #effectiveness #retrieval
- Effective Term Weighting for Sentence Retrieval (SM, ML, DK), pp. 482–485.
- ECIR-2009-LeaseAC #learning #query #rank
- Regression Rank: Learning to Meet the Opportunity of Descriptive Queries (ML, JA, WBC), pp. 90–101.
- SIGIR-2009-Lease #markov #query #random
- An improved markov random field model for supporting verbose queries (ML), pp. 476–483.