Travelled to:
1 × Austria
1 × Italy
1 × Japan
1 × Poland
2 × France
2 × USA
2 × United Kingdom
Collaborated with:
∅ N.Gorogiannis J.Brotherston J.Vauzeilles T.Ito V.Nigam A.Scedrov P.W.O'Hearn S.Kuznetsov Reuben Rowe T.Antonopoulos C.Haase J.Ouaknine T.B.Kirigin C.L.Talcott R.Perovic
Talks about:
logic (9) separ (5) linear (4) problem (3) framework (2) complex (2) rewrit (2) predic (2) induct (2) commut (2)
Person: Max I. Kanovich
DBLP: Kanovich:Max_I=
Contributed to:
Wrote 13 papers:
- FoSSaCS-2014-AntonopoulosGHKO #induction #logic #problem
- Foundations for Decision Problems in Separation Logic with General Inductive Predicates (TA, NG, CH, MIK, JO), pp. 411–425.
- RTA-2012-KanovichKNSTP #framework #process
- A Rewriting Framework for Activities Subject to Regulations (MIK, TBK, VN, AS, CLT, RP), pp. 305–322.
- SAS-2011-GorogiannisKO #abduction #abstraction #complexity
- The Complexity of Abduction for Separated Heap Abstractions (NG, MIK, PWO), pp. 25–42.
- LICS-2010-BrotherstonK #logic
- Undecidability of Propositional Separation Logic and Its Neighbours (JB, MIK), pp. 130–139.
- CSL-2003-KanovichV #problem
- Coping Polynomially with Numerous but Identical Elements within Planning Problems (MIK, JV), pp. 285–298.
- CSL-2002-Kanovich
- Bijections between Partitions by Two-Directional Rewriting Techniques (MIK), pp. 44–58.
- CSL-2001-Kanovich #linear #logic #monad #power of
- The Expressive Power of Horn Monadic Linear Logic (MIK), pp. 39–53.
- LICS-1997-KanovichI #concurrent #linear #logic #process #specification
- Temporal Linear Logic Specifications for Concurrent Processes (MIK, TI), pp. 48–57.
- LICS-1995-Kanovich #complexity #linear #logic
- The Complexity of Neutrals in Linear Logic (MIK), pp. 486–495.
- LICS-1992-Kanovich #linear #logic #programming
- Horn Programming in Linear Logic Is NP-Complete (MIK), pp. 200–210.
- CADE-2017-BrotherstonGK #array #logic #problem
- Biabduction (and Related Problems) in Array Separation Logic (JB, NG, MIK), pp. 472–490.
- IJCAR-2018-KanovichKNS #commutative #framework #logic
- A Logical Framework with Commutative and Non-commutative Subexponentials (MIK, SK, VN, AS), pp. 228–245.
- POPL-2016-BrotherstonGKR #induction #logic #model checking
- Model checking for symbolic-heap separation logic with inductive predicates (JB, NG, MIK, RR), pp. 84–96.