Travelled to:
1 × Israel
1 × Latvia
2 × Canada
2 × Germany
6 × USA
Collaborated with:
∅ V.Rödl M.Koucký J.Krajícek R.Paturi M.Krause P.Nimbhorkar D.Thérien M.Lauria N.Thapen A.Gál K.A.Hansen E.Viola P.Beame R.Impagliazzo T.Pitassi A.R.Woods M.Ajtai L.Babai P.Hajnal J.Komlós E.Szemerédi G.Turán
Talks about:
bound (7) circuit (5) complex (3) depth (3) gate (3) arithmet (2) ramsey (2) comput (2) lower (2) pseudorandom (1)
Person: Pavel Pudlák
DBLP: Pudl=aacute=k:Pavel
Contributed to:
Wrote 12 papers:
- ICALP-v1-2013-LauriaPRT #complexity #graph #proving
- The Complexity of Proving That a Graph Is Ramsey (ML, PP, VR, NT), pp. 684–695.
- STOC-2012-GalHKPV #bound
- Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates (AG, KAH, MK, PP, EV), pp. 479–494.
- STOC-2011-KouckyNP #generative #pseudo
- Pseudorandom generators for group products: extended abstract (MK, PN, PP), pp. 263–272.
- STOC-2010-PaturiP #complexity #on the #satisfiability
- On the complexity of circuit satisfiability (RP, PP), pp. 241–250.
- STOC-2005-KouckyPT #bound
- Bounded-depth circuits: separating wires from gates (MK, PP, DT), pp. 257–265.
- ICALP-1994-Pudlak #bound #communication #complexity #game studies
- Unexpected Upper Bounds on the Complexity of Some Communication Games (PP), pp. 1–10.
- STOC-1994-KrauseP #on the #power of
- On the computational power of depth 2 circuits with threshold and modulo gates (MK, PP), pp. 48–57.
- STOC-1993-PudlakR
- Modified ranks of tensors and the size of circuits (PP, VR), pp. 523–531.
- STOC-1992-BeameIKPPW #bound #exponential #principle
- Exponential Lower Bounds for the Pigeonhole Principle (PB, RI, JK, TP, PP, ARW), pp. 200–220.
- CSL-1990-Pudlak #bound #theorem
- Ramsey’s Theorem in Bounded Arithmetic (PP), pp. 308–317.
- CSL-1989-KrajicekP #modelling
- Propositional Provability and Models of Weak Arithmetic (JK, PP), pp. 193–210.
- STOC-1986-AjtaiBHKPRST #bound #branch #source code
- Two lower bounds for branching programs (MA, LB, PH, JK, PP, VR, ES, GT), pp. 30–38.