Travelled to:
1 × Austria
1 × Germany
1 × Russia
5 × USA
Collaborated with:
P.Madhusudan C.Löding D.Neider S.Saha A.Desai G.Parlato X.Qiu A.Stefanescu P.Madhusudan F.Ivancic G.Balakrishnan N.Maeda A.Gupta
Talks about:
learn (3) data (3) structur (2) quantifi (2) invari (2) proof (2) natur (2) use (2) sequentializ (1) framework (1)
Person: Pranav Garg
DBLP: Garg:Pranav
Contributed to:
Wrote 8 papers:
- CAV-2015-Saha0M #learning #named
- Alchemist: Learning Guarded Affine Functions (SS, PG, PM), pp. 440–446.
- CAV-2014-0001LMN #framework #invariant #learning #named #robust
- ICE: A Robust Framework for Learning Invariants (PG, CL, PM, DN), pp. 69–87.
- OOPSLA-2014-Desai0M #proving #reduction #source code #using
- Natural proofs for asynchronous programs using almost-synchronous reductions (AD, PG, PM), pp. 709–725.
- CAV-2013-0001LMN #data type #invariant #learning #linear #quantifier
- Learning Universally Quantified Invariants of Linear Data Structures (PG, CL, PM, DN), pp. 813–829.
- ICSE-2013-GargIBMG #c #c++ #execution #generative #testing #using
- Feedback-directed unit test generation for C/C++ using concolic execution (PG, FI, GB, NM, AG), pp. 132–141.
- PLDI-2013-Qiu0SM #proving
- Natural proofs for structure, data, and separation (XQ, PG, AS, PM), pp. 231–242.
- SAS-2013-0001MP #abstract domain #automaton #quantifier
- Quantified Data Automata on Skinny Trees: An Abstract Domain for Lists (PG, PM, GP), pp. 172–193.
- TACAS-2011-GargM #composition
- Compositionality Entails Sequentializability (PG, PM), pp. 26–40.