Travelled to:
1 × Brazil
1 × China
1 × India
1 × Japan
1 × Korea
1 × Spain
1 × Turkey
1 × United Kingdom
5 × USA
Collaborated with:
R.Prasad H.Cao E.MacRostie K.Subramanian M.Decerbo R.M.Schwartz J.Makhoul S.Saleem A.Bhardwaj Z.Lu I.Bazzi M.Kamali J.Chen S.N.P.Vitaladevuni F.Choi X.Peng D.A.Castañón R.Sundaram B.Elmieh Y.Wu S.Zha D.Liu R.Meermeier J.Kumar W.Abd-Almageed D.S.Doermann
Talks about:
ocr (7) system (5) model (5) base (5) bbn (5) recognit (4) segment (4) improv (4) byblo (4) use (4)
Person: Premkumar Natarajan
DBLP: Natarajan:Premkumar
Contributed to:
Wrote 18 papers:
- DRR-2014-WuZCLN #framework #markov #recognition #segmentation
- A Markov chain based line segmentation framework for handwritten character recognition (YW, SZ, HC, DL, PN), p. ?–12.
- ICDAR-2013-ChenPCN #detection
- Detecting OOV Names in Arabic Handwritten Data (JC, RP, HC, PN), pp. 994–998.
- ICPR-2012-VitaladevuniCPN #detection #documentation #image #using
- Detecting near-duplicate document images using interest point matching (SNPV, FC, RP, PN), pp. 347–350.
- DRR-2011-KumarPCADN
- Shape codebook based handwritten and machine printed text zone extraction (JK, RP, HC, WAA, DSD, PN), pp. 1–10.
- ICDAR-2011-PengCPN #random #using #video
- Text Extraction from Video Using Conditional Random Fields (XP, HC, RP, PN), pp. 1029–1033.
- ICPR-2010-PrasadBSCN #adaptation #probability #recognition
- Stochastic Segment Model Adaptation for Offline Handwriting Recognition (RP, AB, KS, HC, PN), pp. 1993–1996.
- ICDAR-2009-CaoPSN #adaptation #clustering #using
- Unsupervised HMM Adaptation Using Page Style Clustering (HC, RP, SS, PN), pp. 1091–1095.
- ICDAR-2009-NatarajanSBP #modelling #probability #recognition
- Stochastic Segment Modeling for Offline Handwriting Recognition (PN, KS, AB, RP), pp. 971–975.
- ICDAR-2009-SaleemCSKPN #recognition
- Improvements in BBN’s HMM-Based Offline Arabic Handwriting Recognition System (SS, HC, KS, MK, RP, PN), pp. 773–777.
- ICPR-2008-PrasadSKMN #markov #modelling
- Improvements in hidden Markov model based Arabic OCR (RP, SS, MK, RM, PN), pp. 1–4.
- ICDAR-2007-CaoPNM #bottom-up #fault #robust #segmentation #top-down
- Robust Page Segmentation Based on Smearing and Error Correction Unifying Top-down and Bottom-up Approaches (HC, RP, PN, EM), pp. 392–396.
- ICDAR-2007-SubramanianNDC #detection
- Character-Stroke Detection for Text-Localization and Extraction (KS, PN, MD, DAC), pp. 33–37.
- ICDAR-2005-DecerboNPM #performance
- Performance Improvements to the BBN Byblos OCR System (MD, PN, RP, EM), pp. 411–415.
- ICDAR-2005-NatarajanSPM #modelling
- Character Duration Modeling for Speed Improvements in the BBN Byblos OCR System (PN, RS, RP, EM), pp. 1136–1140.
- ICPR-v2-2004-MacRostieNDP
- The BBN Byblos Japanese OCR System (EM, PN, MD, RP), pp. 650–653.
- ICDAR-2001-NatarajanESM #markov #modelling #using
- Videotext OCR Using Hidden Markov Models (PN, BE, RMS, JM), pp. 947–951.
- ICDAR-1999-LuSNBM #roadmap
- Advances in the BBN BYBLOS OCR System (ZL, RMS, PN, IB, JM), pp. 337–340.
- ICDAR-1999-NatarajanBLMS #documentation #robust
- Robust OCR of Degraded Documents (PN, IB, ZL, JM, RMS), pp. 357–361.