26 papers:
- ECIR-2015-HuynhHR #analysis #learning #sentiment #strict
- Learning Higher-Level Features with Convolutional Restricted Boltzmann Machines for Sentiment Analysis (TH, YH, SMR), pp. 447–452.
- ECIR-2015-YuZHSW #documentation #information retrieval
- Document Boltzmann Machines for Information Retrieval (QY, PZ, YH, DS, JW), pp. 666–671.
- ICML-2015-LeeY #category theory #predict #strict
- Boosted Categorical Restricted Boltzmann Machine for Computational Prediction of Splice Junctions (TL, SY), pp. 2483–2492.
- KDD-2015-XieDX #documentation #modelling #strict
- Diversifying Restricted Boltzmann Machine for Document Modeling (PX, YD, EPX), pp. 1315–1324.
- ICML-c2-2014-MittelmanKSL #strict
- Structured Recurrent Temporal Restricted Boltzmann Machines (RM, BK, SS, HL), pp. 1647–1655.
- ICPR-2014-MorenoS #simulation
- Volume-Based Fabric Tensors through Lattice-Boltzmann Simulations (RM, ÖS), pp. 3179–3184.
- ICPR-2014-TanakaO #novel #strict
- A Novel Inference of a Restricted Boltzmann Machine (MT, MO), pp. 1526–1531.
- ICPR-2014-YamashitaTYYF #strict
- To Be Bernoulli or to Be Gaussian, for a Restricted Boltzmann Machine (TY, MT, EY, YY, HF), pp. 1520–1525.
- ICPR-2014-Yasuda #effectiveness
- Effective Mean-Field Inference Method for Nonnegative Boltzmann Machines (MY), pp. 3600–3605.
- ICPR-2014-ZhangLYQWTZ #detection #statistics
- Sufficient Statistics Feature Mapping over Deep Boltzmann Machine for Detection (CZ, XL, JY, SQ, YW, CT, YZ), pp. 827–832.
- ICML-c2-2013-SohnZLL #learning
- Learning and Selecting Features Jointly with Point-wise Gated Boltzmann Machines (KS, GZ, CL, HL), pp. 217–225.
- ICML-c2-2013-TranPV #learning #multi
- Thurstonian Boltzmann Machines: Learning from Multiple Inequalities (TT, DQP, SV), pp. 46–54.
- ICML-c3-2013-GeorgievN #collaboration #framework #strict
- A non-IID Framework for Collaborative Filtering with Restricted Boltzmann Machines (KG, PN), pp. 1148–1156.
- ICML-2012-DahlAL #strict #word
- Training Restricted Boltzmann Machines on Word Observations (GED, RPA, HL), p. 152.
- ICPR-2012-YasudaKWT #estimation #strict
- Composite likelihood estimation for restricted Boltzmann machines (MY, SK, YW, KT), pp. 2234–2237.
- ICML-2011-ChoRI #adaptation #learning #strict
- Enhanced Gradient and Adaptive Learning Rate for Training Restricted Boltzmann Machines (KC, TR, AI), pp. 105–112.
- ICML-2010-LongS #approximate #simulation #strict
- Restricted Boltzmann Machines are Hard to Approximately Evaluate or Simulate (PML, RAS), pp. 703–710.
- ICML-2010-NairH #linear #strict
- Rectified Linear Units Improve Restricted Boltzmann Machines (VN, GEH), pp. 807–814.
- ICML-2010-Salakhutdinov #adaptation #learning #using
- Learning Deep Boltzmann Machines using Adaptive MCMC (RS), pp. 943–950.
- ICML-2009-TaylorH #modelling #strict
- Factored conditional restricted Boltzmann Machines for modeling motion style (GWT, GEH), pp. 1025–1032.
- ICML-2008-LarochelleB #classification #strict #using
- Classification using discriminative restricted Boltzmann machines (HL, YB), pp. 536–543.
- ICML-2008-Tieleman #approximate #strict #using
- Training restricted Boltzmann machines using approximations to the likelihood gradient (TT), pp. 1064–1071.
- RecSys-2008-GunawardanaM #recommendation
- Tied boltzmann machines for cold start recommendations (AG, CM), pp. 19–26.
- ICML-2007-SalakhutdinovMH #collaboration #strict
- Restricted Boltzmann machines for collaborative filtering (RS, AM, GEH), pp. 791–798.
- ICALP-2002-DuchonFLS #random
- Random Sampling from Boltzmann Principles (PD, PF, GL, GS), pp. 501–513.
- HPDC-1992-BetelloRSR #clustering
- Lattice Boltzmann Method on a Cluster of IBM RISC System/6000 Workstations (GB, GR, SS, FR), pp. 242–247.