50 papers:
- SAT-2015-IserMS #recognition
- Recognition of Nested Gates in CNF Formulas (MI, NM, CS), pp. 255–271.
- SAT-2015-PhilippS #constraints #encoding #library #named #pseudo
- PBLib — A Library for Encoding Pseudo-Boolean Constraints into CNF (TP, PS), pp. 9–16.
- SAT-2014-BiereBLM #constraints #detection
- Detecting Cardinality Constraints in CNF (AB, DLB, EL, NM), pp. 285–301.
- SAT-2014-SaetherTV #satisfiability
- Solving MaxSAT and #SAT on Structured CNF Formulas (SHS, JAT, MV), pp. 16–31.
- DATE-2013-GoultiaevaSB
- Bridging the gap between dual propagation and CNF-based QBF solving (AG, MS, AB), pp. 811–814.
- CAV-2013-VizelRN #generative #performance
- Efficient Generation of Small Interpolants in CNF (YV, VR, AN), pp. 330–346.
- SAT-2013-Stuckey #problem
- There Are No CNF Problems (PJS), pp. 19–21.
- LICS-2012-MullerT #random
- Short Propositional Refutations for Dense Random 3CNF Formulas (SM, IT), pp. 501–510.
- SAT-2012-AchlioptasM #algorithm #bound #exponential #random #satisfiability
- Exponential Lower Bounds for DPLL Algorithms on Satisfiable Random 3-CNF Formulas (DA, RMM), pp. 327–340.
- SAT-2012-Ben-HaimIMM #constraints #encoding
- Perfect Hashing and CNF Encodings of Cardinality Constraints (YBH, AI, OM, AM), pp. 397–409.
- SAT-2012-Manthey #flexibility
- Coprocessor 2.0 — A Flexible CNF Simplifier — (Tool Presentation) (NM), pp. 436–441.
- SAT-2011-Aavani #constraints #pseudo
- Translating Pseudo-Boolean Constraints into CNF (AA), pp. 357–359.
- SAT-2011-HeuleJB #graph #performance
- Efficient CNF Simplification Based on Binary Implication Graphs (MH, MJ, AB), pp. 201–215.
- SAT-2011-OrdyniakPS #satisfiability
- Satisfiability of Acyclic and almost Acyclic CNF Formulas (II) (SO, DP, SS), pp. 47–60.
- SAT-2010-BubeckB #quantifier
- Rewriting (Dependency-)Quantified 2-CNF with Arbitrary Free Literals into Existential 2-HORN (UB, HKB), pp. 58–70.
- SAT-2010-MakinoTY #algorithm #problem
- An Exact Algorithm for the Boolean Connectivity Problem for k-CNF (KM, ST, MY), pp. 172–180.
- DATE-2009-ChambersMV #generative #performance #satisfiability
- Faster SAT solving with better CNF generation (BC, PM, DV), pp. 1590–1595.
- SAT-2009-BailleuxBR #constraints #encoding #pseudo
- New Encodings of Pseudo-Boolean Constraints into CNF (OB, YB, OR), pp. 181–194.
- SAT-2009-GoultiaevaIB
- Beyond CNF: A Circuit-Based QBF Solver (AG, VI, FB), pp. 412–426.
- SAT-2009-JohannsenRW #satisfiability #strict
- Solving SAT for CNF Formulas with a One-Sided Restriction on Variable Occurrences (DJ, IR, MW), pp. 80–85.
- SAT-2008-PorschenS #linear
- A CNF Class Generalizing Exact Linear Formulas (SP, ES), pp. 231–245.
- DAC-2007-HanS #algorithm #named #performance #preprocessor
- Alembic: An Efficient Algorithm for CNF Preprocessing (HH, FS), pp. 582–587.
- TACAS-2007-CondratK #approach #preprocessor
- A Gröbner Basis Approach to CNF-Formulae Preprocessing (CC, PK), pp. 618–631.
- SAT-2007-AudemardS #encoding
- Circuit Based Encoding of CNF Formula (GA, LS), pp. 16–21.
- SAT-2007-Buresh-OppenheimM #polynomial
- Minimum 2CNF Resolution Refutations in Polynomial Time (JBO, DGM), pp. 300–313.
- SAT-2007-ManoliosV #performance
- Efficient Circuit to CNF Conversion (PM, DV), pp. 4–9.
- SAT-2006-PorschenSR #linear #on the
- On Linear CNF Formulas (SP, ES, BR), pp. 212–225.
- DATE-2005-FuYM #satisfiability
- Considering Circuit Observability Don’t Cares in CNF Satisfiability (ZF, YY, SM), pp. 1108–1113.
- STOC-2005-AgarwalCMM #algorithm #approximate #problem
- O(sqrt(log n)) approximation algorithms for min UnCut, min 2CNF deletion, and directed cut problems (AA, MC, KM, YM), pp. 573–581.
- SAT-J-2004-HeuleM05
- Aligning CNF- and Equivalence-Reasoning (MH, HvM), pp. 145–156.
- LICS-2005-Atserias05a #random
- Definability on a Random 3-CNF Formula (AA), pp. 458–466.
- SAT-2005-GershmanS #effectiveness #preprocessor
- Cost-Effective Hyper-Resolution for Preprocessing CNF Formulas (RG, OS), pp. 423–429.
- SAT-2005-Zhang #on the #on the fly
- On Subsumption Removal and On-the-Fly CNF Simplification (LZ), pp. 482–489.
- DAC-2004-DargaLSM #detection #symmetry
- Exploiting structure in symmetry detection for CNF (PTD, MHL, KAS, ILM), pp. 530–534.
- DATE-v1-2004-Velev #performance #verification
- Exploiting Signal Unobservability for Efficient Translation to CNF in Formal Verification of Microprocessors (MNV), pp. 266–271.
- ICALP-2004-FeigeO #random #scalability
- Easily Refutable Subformulas of Large Random 3CNF Formulas (UF, EO), pp. 519–530.
- SAT-2004-HeuleM
- Aligning CNF- and Equivalence-reasoning (MH, HvM), pp. 174–180.
- DATE-2003-GoldbergN #proving #satisfiability #verification
- Verification of Proofs of Unsatisfiability for CNF Formulas (EIG, YN), pp. 10886–10891.
- STOC-2003-Ben-SassonHR
- Some 3CNF properties are hard to test (EBS, PH, SR), pp. 345–354.
- SAT-2003-Williams #on the
- On Computing k-CNF Formula Properties (RW), pp. 330–340.
- DAC-2002-GanaiAGZM #algorithm #satisfiability
- Combining strengths of circuit-based and CNF-based algorithms for a high-performance SAT solver (MKG, PA, AG, LZ, SM), pp. 747–750.
- CADE-2002-Goldberg #satisfiability #testing
- Testing Satisfiability of CNF Formulas by Computing a Stable Set of Points (EG), pp. 161–180.
- SAT-2002-DavydovaD #optimisation
- CNF application in discrete optimization (ID, GD), p. 44.
- SAT-2002-Goldberg #satisfiability #testing
- Testing satisfiability of CNF formulas by computing a stable set of points (EG), p. 12.
- SAT-2002-ManyaABCL
- Resolution methods for many-valued CNF formulas (FM, CA, RB, AC, CML), p. 42.
- SAT-2002-MatsuuraI
- Inclusion-exclusion for k-CNF formulas (AM, KI), p. 3.
- SAT-2002-Szeider
- Generalizations of matched CNF formulas (SS), p. 7.
- STOC-1998-BeameKPS #complexity #on the #proving #random #satisfiability
- On the Complexity of Unsatisfiability Proofs for Random k-CNF Formulas (PB, RMK, TP, MES), pp. 561–571.
- SAC-1993-VaidyanathanL #analysis #bound #learning
- Analysis of Upper Bound in Valiant’s Model for Learning Bounded CNF Expressions (SV, SL), pp. 754–761.
- ML-1992-HirschbergP #analysis #concept #learning
- Average Case Analysis of Learning κ-CNF Concepts (DSH, MJP), pp. 206–211.